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ABSTRACT
In this paper, we study the optimal output consensus problem for networked linear multi-agent systems.
Existing distributed algorithms usually rely on continuous communication among neighbouring agents or
continuous update of each agent’s local controller. To save communication and computation resources,we
apply event-triggered technique to this optimal output consensusproblem.We first constructively develop
an event-triggered algorithm with a set of applicable parameters relying on event-triggered communica-
tion and control and show its effectiveness in solving the problem by rigorous proofs. Then we extend it
to the case where the triggering conditions only have to be checked in some sampling time instants. Two
simulation examples are given to illustrate the efficacy of our designs.
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1. Introduction

Multi-agent consensus problem has been actively investigated
for many years due to its wide applications in machine learn-
ing, smart grid, and sensor networks. Particularly, developing
distributed algorithms to drive the given multi-agent system to
reach an optimal consensus have received a large amount of
attention recently (Yang et al., 2019). This problem is a nat-
ural extension of existing distributed optimisation results for
single integrators to non-trivial dynamic agents and has been
found in many practical scenarios especially when some engi-
neering multi-agent systems are involved (S. Li et al., 2014;
Zhang et al., 2017). Since the physical plants are often described
by continuous-time models, many efforts have been made to
develop continuous-time algorithms to achieve the optimal
consensus goal for different classes of high-order multi-agent
systems, e.g. (An & Yang, 2022; L. Li et al., 2022; T. Liu et al.,
2022; Tang et al., 2019; X. Wang et al., 2020; Xie & Lin, 2017).

In the digital implementation of such continuous-time algo-
rithms, the controller update and information sharing are only
allowed to happen at some discrete time instants instead of the
whole time interval [0,∞). A typical treatment is to develop
their time-scheduled periodic counterparts, i.e. the controller
and shared information are updated periodically according to
some fixed periods. Nevertheless, such algorithms may be inef-
ficient as the periods for control execution and information
sharing are usually determined by some worst-case analysis. To
deal with this issue, event-triggered techniques have been exten-
sively studied for multi-agent consensus coordination problems
to save the computation and communication burden (see an
excellent survey paper (Nowzari et al., 2019)). In such event-
triggered designs, the agents do not have to update its con-
troller or share its own information with neighbouring agents
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periodically. These actions are taken only if they are necessary
according to some extra real-time aperiodic mechanisms.

Our goal is to apply event-triggered technique to the opti-
mal consensus problems and develop effective event-triggered
optimal consensus algorithms for a group of high-order multi-
agent systems. In fact, there have been several results available
in the literature discussing event-triggered optimal consen-
sus/distributed optimisation designs along this technical line.
For example, Kia et al. (2015) considered the optimal con-
sensus/distributed optimisation problem for single integrators
under discrete (event-triggered) communication conditions.
Similar designs were delivered in S. Liu et al. (2016), Deng
et al. (2016), Kajiyama et al. (2018), C. Liu et al. (2019), and
M. Li et al. (2020) to meet different optimisation requirements.
Since these results were exclusively derived for single-integrator
multi-agent systems, some recent interesting attempts were fur-
ther made for second-order or linear agents in Yi et al. (2018),
D. Wang et al. (2018), Q. Wang et al. (2019), Z. Li et al. (2020),
Yu and Chen (2021), and Xian et al. (2024). However, most
aforementioned event-triggered designs are only limited to the
communication aspect. That is, the actuator/controller of each
agent is assumed to be capable of instantly reacting to the
received information from neighbours and continuously updat-
ing. When the agents are physical ones, their actuators and the
communication sensors may have different clocks. Even they
have the same clock, the controllers may not have to update
as frequent as the communication sensors. Thus, this continu-
ous controller update requirementmight be too demanding and
consume a larger number of computation resources and energy
than they necessarily need. As a result, it is natural for us to fur-
ther take the controller update issue into consideration and seek
more efficient optimal output consensus algorithms.
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Motivated by the aforementioned observations, we aim at
optimal consensus controllers for a general class of linear multi-
agent systems in the event-triggered control and event-triggered
communication setting. That is, the controller update and infor-
mation sharing do not have to be implemented in a continuous
or synchronously discrete fashion. Thus, the expected optimal
consensus controller is inherently asynchronous and of a multi-
rate nature. This will inevitably make the parameter choice
and performance analysis (particularly, the Zeno-free property)
of our algorithms much more challenging than existing opti-
mal consensus designs with merely event-triggered control or
event-triggered communication.

The contribution of this paper can be summarised as follows:

• Compared with existing event-triggered optimal consen-
sus results, we formulate and solve the problem for gen-
eral linear multi-agent systems. The agent dynamics can
strictly cover the integrator-type agents investigated in Yi
et al. (2018), D. Wang et al. (2018), Z. Li et al. (2020),
and Yu and Chen (2021) as special cases. Moreover, the
communication topology is allowed to be directed and
weight-balanced other than undirected graphs in Yi et al.
(2018), D. Wang et al. (2018), Z. Li et al. (2020), and Yu
and Chen (2021).

• Depending upon whether continuous monitoring of trig-
gering conditions is required or not, we constructively
propose two different kinds of novel event-triggered con-
trollers for heterogeneous multi-agent systems. Contrast
to most event-trigged optimal consensus algorithms, the
proposed algorithms take both event-triggered controller
update and information sharing issues into consideration.
This substantially saves the communication and compu-
tation resources and enlarges the potential application of
such optimal consensus algorithms for high-order multi-
agent systems.

The rest of this paper is organised as follows:Wefirst state our
problem in Section 2. Then we present the main results of this
paper in Section 3. Finally, two examples are given in Section 4
with some concluding remarks in Section 5.

Notations: Let R
n be the n-dimensional Euclidean space and

R
n×m be the set of all n × m real matrices. 1n (or 0n) denotes

an n-dimensional all-one (or all-zero) column vector and
1n×m (or 0n×m) all-one (or all-zero) matrix. col (a1, . . ., an) =
[a�

1 , . . ., a�
n ]� for column vectors ai (i = 1, . . ., n). Let M1 =

1√
N
1N and M2 be the matrices satisfying M�

2 M1 = 0N−1,
M�

2 M2 = IN−1, andM2M�
2 = IN − M1M�

1 . For a vector x (or
matrix A), ‖x‖ (or ‖A‖) denotes its Euclidean (or spectral)
norm.

2. Problem statement

We consider the distributed coordination problem for linear
multi-agent systems

ẋi = Aixi + Biui
yi = Cixi, i = 1, . . . , N

(1)

where xi ∈ R
ni , ui ∈ R

m, and yi ∈ R
q are the state, input, and

output of agent i. The system matrices Ai, Bi, Ci are constant
with compatible dimensions.

Suppose that each agent i ∈ N � {1, . . . , N} has a private
cost function fi : R

q → Rwith bounded Hessians in the follow-
ing sense.

Assumption 2.1: For all i ∈ N and s ∈ R
q, fi is twice contin-

uously differentiable and satisfies that hIq ≤ ∇2fi(s) ≤ h̄Iq for
some constants h̄ ≥ h > 0.

Define the global cost function for these agents by f (s) =∑N
i=1 fi(s) for any given s ∈ R

q. Under Assumption 2.1, func-
tion f has a unique minimal solution y∗ ∈ R

q. We are going
to develop effective rules for these multi-agent systems to
drive their outputs to reach an optimal consensus in the sense
that limt→∞ ‖yi(t) − yj(t)‖ = 0 and limt→∞ yi(t) = y∗ for all
i ∈ N .

Since the local cost function fi is private to agent i, we
are interested in distributed optimal consensus algorithms
for (1). For this purpose, we use a weighted directed graph
G = {N , E ,A} to describe the information sharing relationship
among these agents with node set N , edge set E ⊂ N × N ,
and weighted adjacency matrix A ∈ R

N×N . The entry aij at
the ith row and jth column of A is strictly positive if there
exists a directed edge from node j to node i and is 0 other-
wise. Here a directed edge (i, j) ∈ E means agent j can get access
to the information of agent i. Let Ni = {j ∈ N | (j, i) ∈ E} be
the set of all immediate neighbours of agent i that it can com-
municate with. More graph notations can be found in Mesbahi
and Egerstedt (2010).

Assumption 2.2: Digraph G is strongly connected and weight-
balanced.

Let Sym (L) = L+L�
2 with L the Laplacian of digraphG. It can

be verified that Sym (L) is positive semidefinite with all eigen-
values being real under Assumption 2.2. Then we can further
order its eigenvalues as 0 = λ1 < λ2 ≤ · · · ≤ λN .

This optimal consensus problem has been partially studied
in the name of distributed optimisation/optimal coordination
for several kinds of high-order multi-agent systems via contin-
uous algorithms (An & Yang, 2022; Z. Li et al., 2020; Tang et al.,
2019; Xie & Lin, 2017). However, these continuous optimal con-
sensus algorithms require each agent communicating with its
neighbours and updating its own controller in a continuous
manner, whichmay consume larger amounts of communication
and computation resources than they necessarily need. In this
paper, we are interested in event-triggered optimal consensus
designs for multi-agent systems (1).

To be specific, we assume that each agent can broadcast
its current information to its neighbours through the underly-
ing communication network described by G at some discrete
instants {̃tik} with 0 = t̃i0 < t̃i1 < . . . for i ∈ N and k ∈ Z+ =
{0, 1, . . .}. Meanwhile, they decide whether and when to update
its local controller ui to ensure the expected optimal output
consensus. Suppose that the controller update time instants are
{tik} with 0 = ti0 < ti1 < . . . for i ∈ N and k ∈ Z+. Then our
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problem for the multi-agent systems (1) boils down to develop
optimal consensus algorithms of the following form:

ui(t) = hCi (xi(tik), ξi(tik), ξ̃j(tik), j ∈ Ni)

ξ̇i = gCi (xi(tik), ξi(tik), ξ̃j(tik), j ∈ Ni), t ∈ [tik, t
i
k+1)

(2)

where hCi and gCi are some continuous functions to be spec-
ified and ξi is the internal state of the compensator at agent
i’s controller. Moreover, ξ̃j represents the broadcast version of
the internal state ξj by agent j defined as ξ̃j(t) = ξj(t̃

j
k) for t ∈

[t̃jk, t̃
j
k+1).

Compared with the aforementioned continuous algorithms,
the information sharing communication and controller update
in rule (2) happen only at some discrete time instants instead
of over the time interval [0,∞). This treatment will definitely
save many communication and computation resources. In fact,
several interesting attempts have been reported in the literature
along this technical line (Deng et al., 2016; Kajiyama et al., 2018;
Kia et al., 2015; M. Li et al., 2020; C. Liu et al., 2019; S. Liu
et al., 2016;D.Wang et al., 2018).While theseworksweremainly
focused on the communication aspect and enforce that tki = t̃ki ,
we remove this limitation and expect more efficient optimal
consensus algorithms by further considering event-triggered
control and event-triggered communication simultaneously.

3. Main result

In this section, we solve the optimal output consensus problem
for multi-agent systems (1) via event-triggered designs.

Before the main results, an extra assumption is made to
ensure the tractability of our formulated optimal consensus
problem.

Assumption 3.1: For all i ∈ N , the triplet (Ci, Ai, Bi) is mini-
mal and

rank
[
Ai Bi
Ci 0

]
= ni + q

Remark 3.1: Assumption 3.1 specifies the class of high-order
agent dynamics that we are interested in. It includes the
integrators or minimum-phase dynamics discussed in Xie
and Lin (2017), Tang et al. (2019), An andYang (2022), and Z. Li
et al. (2020) as special cases. Moreover, under this assumption,
the so-called regulator equations 0 = AiXi + BiUi, Iq = CiXi
are ensured to have a unique solution pairXi andUi with proper
dimensions (Huang, 2004).

We first choose a matrix Ki1 such that Âi � Ai + BiKi1 is
Hurwitz and let Ki2 � Ui − Ki1Xi. Denote by λPi the maximal
eigenvalue of the positive definite matrix Pi such that Â�

i Pi +
PiÂi = −2Ini . According to Theorem 1.7 in Huang (2004),
the optimal consensus problem can be trivially solved by a
full-information rule ũoi (t) = Ki1xi(t) + Ki2y∗ if y∗ is globally
known by each agent.

Motivated by this observation, we propose the following
controller for agent i with both event-triggered control and
event-triggered communication:

ui(t) = Ki1xi(tik) + Ki2zi(tik)

żi = −α∇fi(zi) − β

N∑
j=1

aij(z̃i − z̃j) −
N∑
j=1

aij(ṽi − ṽj)

v̇i = αβ

N∑
j=1

aij(z̃i − z̃j), t ∈ [tik, t
i
k+1) (3)

where z̃i(t) and ṽi(t) are the broadcast version of zi(t) and vi(t)
by agent i, and α, β are parameters to be specified later. This
controller is distributed and has multiple rates corresponding
to the discrete updates for both control and communication.

Let ũi(t) = Ki1xi(t) + Ki2zi(t), ūi(t) = ui(t) − ũi(t), z̄i(t) =
zi(t) − z̃i(t), and v̄i(t) = vi(t) − ṽi(t). The composite system
of (1) and (3) can be written as follows:

ẋi = Âixi + BiKi2zi + Biūi

żi = −α∇fi(zi) − β

N∑
j=1

aij(z̃i − z̃j) −
N∑
j=1

aij(ṽi − ṽj)

v̇i = αβ

N∑
j=1

aij(z̃i − z̃j), t ∈ [tik, t
i
k+1), k ∈ Z

+ (4)

We propose the following event-triggeredmechanisms to deter-
mine the triggering time instants for information sharing com-
munication and controller update:

t̃ik+1 = inf
{
t > t̃ik | ‖col (z̄i(t), v̄i(t))‖ ≥ c̃0 + c̃1 e−γ̃ t

}
(5)

tik+1 = inf
{
t > tik | ‖ūi(t)‖ ≥ c0 + c1 e−γ t} (6)

where c̃0, c̃1, γ̃ and c0, c1, γ are nonnegative constants to be
specified later. Such event-triggering functions have beenwidely
used in the literature (Guinaldo et al., 2011; Nowzari et al., 2019;
Seyboth et al., 2013).

Here is the first main result of this paper.

Theorem 3.1: Suppose that Assumptions 2.1–3.1 hold. Let α ≥
max

{
1, 2η

min{h, λ2} ,
6h̄2
hλ2

}
,β ≥ max

{
1, 7α

2λ2N
λ22

}
for some given con-

stant η > 0. Set c̃0 ≥ 0, c̃1 ≥ 0, c̃0 + c̃1 > 0 with 0 < γ̃ <
min{1, η

2 } for rule (5) and c0 ≥ c̃0, c1 ≥ 0, c0 + c1 > 0 with 0 <

γ < min
{
1, 1

2λPi
, γ̃

}
for rule (6). Then, along the trajectory of

the composite system (1) and (3)with triggering rules (5) and (6),
the following assertions hold:

(a) There exists a constant τmin > 0 such that tik+1 − tik >

τmin and t̃ik+1 − t̃ik > τmin for all i ∈ N and k ∈ Z
+.

(b) yi(t) converges into a ball centred at y∗ with its radius
proportional to c0 + c̃0 ≥ 0 for all i ∈ N .

(c) When c0 = c̃0 = 0, yi exponentially converges to the exact
optimal solution y∗ as t goes to ∞ for all i ∈ N .

Before the proof of this theorem, we introduce a key lemma
summarising the convergence performance of zi(t) and vi(t)
along the trajectory of system (4).

Lemma 3.1: Suppose that Assumptions 2.1–3.1 hold and the
parameters are chosen according to Theorem 3.1. Then, along the
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trajectory of system (4), zi(t) exponentially converges into a ball
centred at y∗ with its radius proportional to c̃0 ≥ 0. Moreover,
there exists a constant τ̃min > 0 such that t̃ik+1 − t̃ik > τ̃min for
all i ∈ N and k ∈ Z

+.

Proof: To prove this lemma, we first obtain the following com-
pact form:

ż = −α∇ f̂ (z) − β(L ⊗ Iq)z̃ − (L ⊗ Iq)ṽ

v̇ = αβ(L ⊗ Iq)z̃
(7)

where f̂ (z) �
∑N

i=1 fi(zi) with z = col (z1, . . . , zN), v = col
(v1, . . . , vN), z̃ = col (z̃1, . . . , z̃N), and ṽ = col (ṽ1, . . . , ṽN). It
can be verified that function f̂ is h-strongly convex while its
gradient ∇ f̂ (z) is h̄-Lipschitz.

Viewing z̃ − z and ṽ − v as perturbations of system (7),
we suppose col (z∗, v∗) to be an equilibrium of the unper-
turbed system. One can practically verify that z∗ = 1N ⊗ y∗
under the lemma conditions. Then we perform the coordinate
transformation: ẑ1 = (M�

1 ⊗ Iq)(z − z∗), ẑ2 = (M�
2 ⊗ Iq)(z −

z∗), v̂1 = (M�
1 ⊗ Iq)(v − v∗), and v̂2 = (M�

2 ⊗ Iq)[(v + αz) −
(v∗ + αz∗)]. It follows that ˙̂v1 = 0

˙̂z1 = −α(M�
1 ⊗ Iq)�

˙̂z2 = −α(M�
2 ⊗ Iq)� − β(ML ⊗ Iq)ẑ2

+ α(ML ⊗ Iq)ẑ2 − (ML ⊗ Iq)v̂2 + 	1

˙̂v2 = −α(ML ⊗ Iq)v̂2 + α2(ML ⊗ Iq)ẑ2

− α2(M�
2 ⊗ Iq)� + α	2 (8)

where � � ∇ f̂ (z) − ∇ f̂ (z
), ML = M�
2 LM2, 	1 � (β − α)

(MLM�
2 ⊗ Iq)z̄ + (MLM�

2 ⊗ Iq)v̄, and 	2 � (MLM�
2 Iq)

v̄ − α(MLM�
2 ⊗ Iq)z̄.

Let ẑ = col (ẑ1, ẑ2) andW0(ẑ, v̂2) = 1
2 ẑ

�ẑ + 1
α3 v̂�

2 v̂2 with α
chosen in the theorem.

We take the time derivative ofW0 along the trajectory of (8)
and have

Ẇ0 ≤ − αh‖ẑ‖2 − βλ2‖ẑ2‖2 + αλN‖ẑ2‖2 + λN‖ẑ2‖‖v̂2‖

− 2λ2
α2 ‖v̂2‖2 + 2λN

α
‖ẑ2‖‖v̂2‖

+ 2h̄
α

‖v̂2‖‖ẑ‖ + ẑ�2 	1 + 2
α2 v̂

�
2 	2

≤ −
(

αh − 3h̄2

λ2

)
‖ẑ‖2 − λ2

α2 ‖v̂2‖2 + ẑ�2 	1 + 2
α2 v̂

�
2 	2

−
(

βλ2 − αλN − 3α2λ2N
λ2

− 3λ2N
λ2

)
‖ẑ2‖2

≤ − ηW0 + ‖	1‖2
2η

+ ‖	2‖2
αη

where we have used Young’s inequality to handle the cross
terms. Recalling the expressions of 	1 and 	2, we have

Ẇ0 ≤ −ηW0 + k̃e‖col (z̄, v̄)‖2

≤ −ηW0 + Nk̃e(c̃0 + c̃1 e−γ̃ t)2

for some constant k̃e > 0. Solving this differential inequality or
recalling Lemma 9.8 in Khalil (2002), one can conclude that
W0(t) is uniformly ultimately bounded with an ultimate bound
κ̃ c̃20 for some constant κ̃ > 0. Recalling the definition ofW0, one
can directly conclude that zi − y∗ converges to a ball centred at
0 with its radius proportional to c̃0. Particularly, when c̃0 = 0,
we have

W0(t) ≤ W0(0) e−ηt + Nk̃ec̃21

∫ t

0
e−η(t−τ) e−2γ̃ τd τ

≤ kW[e−2γ̃ t + e−ηt] (9)

with kW � W0(0) + Nk̃ec̃21
η−2γ̃ . According to the definition of W0,

this implies the exponential convergence of zi(t) towards y∗ as t
tends to ∞.

Next, we seek some τ̃min such that t̃ik+1 − t̃ik > τ̃min. For this
purpose, let us consider the evolution of col (z̄i(t), v̄i(t)). Since
the right-hand side of system (8) is Lipschitz with respect to
col (ẑ(t), v̂2(t)) and the two terms	1 and	2 are Lipschitz with
respect to col (z̄, v̄), we have

‖col ( ˙̄zi(t), ˙̄vi(t))‖ ≤ ‖col ( ˙̄z(t), ˙̄v(t)‖ = ‖col ( ˙̂z(t), ˙̂v2(t)‖
≤ h̃M‖col (ẑ(t), v̂2(t))‖

+ h̃	‖col (z̄(t), v̄(t))‖
≤

√
2α3h̃M

√
W0(t) + h̃	‖col (z̄(t), v̄(t))‖

(10)

for some constants h̃M , h̃	 > 0.
From here, we consider two different cases (i.e. c̃0 �=

0 and c̃0 = 0) to complete the proof. When c̃0 �= 0, we
can further obtain that ‖col ( ˙̄zi(t), ˙̄vi(t))‖ ≤ h̃M

√
4α3kW +

h̃	

√
N(c̃0 + c̃1) � k̃u. Hence, ‖col (z̄i(t), v̄i(t))‖ ≤ k̃u(t − t∗).

Then the next event will not be triggered before t∗ + c̃0/k̃u.
When c̃0 = 0, we use the bound of W0(t) and conclude that
‖col ( ˙̄zi(t), ˙̄vi(t))‖ ≤ ˜̂c1

(
e−

ηt
2 + e−γ̃ t

)
= 2˜̂c1 e−γ̃ t for positive

˜̂c1 > 0. Consider the equation 2˜̂c1s − c̃1 e−γ̃ s = 0. It has a
unique solution τ̃1 > 0 by the intermediate value theorem.
Moreover, since the left-hand side of this equation is monotone,
the following inequality holds for any t∗ < t < t∗ + τ̃1:

‖col (z̄i(t), v̄i(t))‖ ≤ 2˜̂c1 e−γ̃ t∗(t − t∗) < ĉ1 e−γ̃ t

That is, the next eventwill not be triggered before t∗ + τ̃1. In this
way, we set τ̃min = min{̃c0/k̃u, τ̃1} for both cases. The proof is
thus complete. �

With help of Lemma 3.1, we go back to system (4) and give
the proof of Theorem 3.1.

Proof of Theorem 3.1: We first show the latter two items and
then identify some τmin for item (a) to complete the proof.

Letting x̄i = xi − Xizi gives ˙̄xi = Âix̄i + Biūi − Xiżi. We set
Vi(x̄i) = x̄�

i Pix̄i. Its time derivative along the trajectory of x̄i
satisfies

V̇i = 2x̄�
i Pi[Âix̄i + Biūi − Xiżi]
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≤ −‖x̄i‖2 + 2‖PiBi‖2‖ūi‖2 + 2‖PiXi‖2|żi|2

Then we recall that ‖żi‖2 = ‖˙̃zi‖2 and utilise the Lipschitzness
of the right-hand side of system (8). It follows that

‖żi‖2 ≤ 2h̃2M‖col (ẑ(t), v̂2(t))‖2 + 2h̃2	‖col (z̄, v̄)‖2

≤ 4h̃2Mα3W0 + 2h̃2	N(c̃0 + c̃1 e−γ̃ t)2

By the inequality (9), we further have

‖żi‖2 ≤ 8h̃2Mα3kW e−2γ̃ t + 2h̃2	N(c̃0 + c̃1 e−γ̃ t)2

≤ (8h̃2Mα3kW + 4h̃2	Nc̃21) e
−2γ̃ t + 4h̃2	Nc̃20 (11)

This together with the triggering mechanism (6) implies that

V̇i ≤ − 1
λPi

Vi + kγ e−2γ t + kc(c0 + c̃0)2 (12)

for kγ � 16maxi{‖PiXi‖2(h̃2Mα3kW + h̃2	Nc̃21) + ‖PiBi‖2c21}
and kc � 8maxi{‖PiBi‖2 + ‖PiXi‖2h̃2	N}. According to
Lemma 9.8 in Khalil (2002), Vi(t) is uniformly ultimately
bounded with an ultimate bound proportional to (c0 + c̃0)2.
Note that yi − y∗ = Cix̄i + zi − y∗. By the definition of Vi and
Lemma 3.1, we conclude that yi − y∗ converges to a ball cen-
tred at 0 with its radius proportional to c0 + c̃0. This is exactly
the statement in item (b).

Particularly, when c0 = c̃0 = 0, we solve the inequality (12)
and have

Vi(t) ≤ Vi(0) e
− t

λPi +
∫ t

0
e
− t−τ

λPi kγ e−2γ τd τ

≤ kVi

[
e
− t

λPi + e−2γ t
]

(13)

with kVi � Vi(0) + 2γ λPi kγ

1−2λPiγ
. By the triangle inequality, this

together with Lemma 3.1 implies the exponential convergence
of yi towards y∗ as t tends to ∞, i.e. item (c).

Next, we prove item (a). Since we have found a constant
τ̃min such that t̃k+1

i − t̃ki > τ̃min, it suffices to confirm a similar
property for the controller update time instants. For this pur-
pose, we check the evolution of ‖ūi(t)‖. Suppose that agent i
is triggered to update its controller at t∗ ≥ 0. Before the next
controller update event, the derivative of ūi(t) satisfies that

˙̄ui = −˙̃ui = −Ki1(Âix̄i + Biūi) − Ki2żi (14)

From (11), there must be some kz > 0 such that ‖żi‖ ≤ kz(c̃0 +
c̃1 e−γ̃ t). Recalling that ‖ūi(t)‖ ≤ c0 + c1 e−γ t before the next
triggering time, we further have

‖ ˙̄ui‖ ≤ ‖Ki1Âix̄i‖ + ‖Ki1Bi‖c0 + kz‖Ki2‖c̃0
+ ‖Ki1Bi‖c1 e−γ t + kz‖Ki2‖c̃1 e−γ̃ t

≤ ‖Ki1Âix̄i‖ + (‖Ki1Bi‖c1 + kz‖Ki2‖c̃1) e−γ t

+ (‖Ki1Bi‖ + kz‖Ki2‖)(c0 + c̃0)

Again, we consider two different cases depending uponwhether
the constant c0 is 0 or not to determine a lower bound for
controller update inter-event intervals.

When c0 �= 0, from the ultimate boundedness of x̄i(t), there
exists some ku > 0 such that ‖ ˙̄ui‖ ≤ ku for all i ∈ N . Hence,
‖ūi(t)‖ ≤ ∫ t

t∗ ‖ ˙̄ui(t)‖ d t ≤ ku(t − t∗). Note that the next event
will not be triggered before ‖ūi(t)‖ reaches c0. Thus, the inter-
event intervals for controller updatesmust be bounded from the
below by τ0 = c0/ku.

When c0 = 0, we have c̃0 = 0 by parameter choices. Recall-

ing the inequality (13), we conclude that ‖ ˙̄ui(t)‖ ≤ ĉ1
(
e
− t

2λPi +
e−γ t) < 2ĉ1 e−γ t for some constant ĉ1 > 0. Since ūi(t∗) = 0,
it follows then ‖ūi(t)‖ ≤ 2ĉ1 e−γ t∗(t − t∗) for t > t∗. By sim-
ilar arguments as in the proof of Lemma 3.1, we consider the
equation 2ĉ1s − c1 e−γ s = 0 and denote its unique solution by
τ1 > 0. Thus, for any t∗ ≤ t < t∗ + τ1, ‖ūi(t)‖ < 2ĉ1 e−γ t∗τ1 =
c1 e−γ (t∗+τ1) < c1 e−γ t . This means the next event for rule (6) is
not triggered before t∗ + τ1, or the inter-event interval is lower
bounded by τ1.

Overall, we can set τmin = min{τ0, τ1, τ̃min}with τ̃min deter-
mined in Lemma 3.1 for both cases. This confirms the statement
in item (a) and thus completes the proof. �

Remark 3.2: The proposed controller (3) consists of two mod-
ules, i.e. an event-triggered optimal signal generator to repro-
duce the expected optimal consensus point and an event-
triggered tracking controller for each agent to approach the gen-
erated estimate of the optimal solution. This design is adapted
from the embedded design scheme in Tang et al. (2019) to
the event-triggered setting. Through this structure, we can
construct event-triggered mechanisms for information sharing
communication and controller update in a separate way.

To implement the event-triggered algorithm (3) with (5)
and (6), we have to monitor the triggering conditions in a con-
tinuous manner. This incurs additional computation overhead.
Next, we provide its periodic checking extension to avoid this
issue.

Let Tk = kτ with τ > 0 a sampling time to be specified later.
Then, for t ∈ [Tk, Tk+1), we modify the information sharing
and controller update rules as follows:

col (z̃i(t), ṽi(t)) =
{
col (zi(Tk), vi(Tk)), when Ci1(Tk) ≥ 0
col (z̃i(Tk), ṽi(Tk)), when Ci1(Tk) < 0

ui(t) =
{
ũi(Tk), when Ci2(Tk) ≥ 0
ui(Tk), when Ci2(Tk) < 0

(15)

where Ci1(t) � ‖col (z̄i(t), v̄i(t))‖ − c̃0 − c̃1 e−γ̃ t and Ci2(t) �
‖ūi(t)‖ − c0 − c1 e−γ t . Apparently, the information sharing or
controller update only happens when the corresponding con-
dition is triggered at the periodic sampling time. Thus, no
continuous monitoring is required any more in this algorithm.

Since Zeno behaviours are naturally excluded under rule
(15), we only have to focus on the convergence issue. Here is
the second main result of this paper.

Theorem 3.2: Suppose that Assumptions 2.1–3.1 hold. Choose
the same parameters in Theorem 3.1 and let 0 < τ < min{ 1

γ̃ ,
1
γ

}
. Then, along the trajectory of the composite system (1) and

(3) with rule (15), yi(t) converges into a ball centred at y∗ with its
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radius proportional to c0 + c̃0 ≥ 0 for all i ∈ N . Moreover, when
c0 = c̃0 = 0, yi(t) exponentially converges to the exact optimal
solution y∗ as t goes to ∞ for all i ∈ N .

Proof: Performing the same coordinate transformations in (4)
and (7), we can put the closed-loop system (1) and (3) with
rule (15) into the following form:

˙̄xi = Âix̄i + Biūi − Xiżi
˙̂z1 = −α(M�

1 ⊗ Iq)�

˙̂z2 = −α(M�
2 ⊗ Iq)� − β(ML ⊗ Iq)ẑ2

+ α(ML ⊗ Iq)ẑ2 − (ML ⊗ Iq)v̂2 + 	1

˙̂v2 = −α(ML ⊗ Iq)v̂2 + α2(ML ⊗ Iq)ẑ2

− α2(M�
2 ⊗ Iq)� + α	2

with ˙̂v1 = 0. Following a similar procedure as in the proof of
Theorem 3.1, we first consider the evolution of ẑ1(t), ẑ2(t), and
v̂2(t), and then go back the whole system.

First, we use the same functionW0(t) defined in the proof of
Lemma 3.1 and have

Ẇ0 ≤ −ηW0 + k̃e‖col (z̄(t), v̄(t))‖2 (16)

Consider its evolution over any given time interval [Tk,Tk+1).
From here, it suffices for us to consider the case when η

2W0(t) ≤
k̃e‖col (z̄(t), v̄(t))‖2 for any t ∈ [Tk, Tk+1). Otherwise, we
must have Ẇ0(t) ≤ − η

2W0(t) at the time when η
2W0(t) >

k̃e‖col (z̄(t), v̄(t))‖2. This implies that W0(t) is decreasing at
these time instants, which does not deteriorate the convergence
ofW0(t).

Let θ(t) � ‖col (z̄(t), v̄(t))‖. By the inequality (10), we have

θ̇ ≤ ‖col ( ˙̄z(t), ˙̄v(t))‖ ≤
{
2
√

α3k̃e/ηh̃M + h̃	

} √
Nθ (17)

Since nomatter whether the controller update event is triggered
or not at Tk, we always have θ(Tk) ≤ c̃0 + c̃1 e−γ̃Tk . Then we
solve the inequality (17) and have

θ(t) ≤ e
{
2
√

α3k̃e/ηh̃M+h̃	

}√
Nτ [c̃0 + c̃1 e−γ̃Tk]

≤ e
{
2
√

α3k̃e/ηh̃M+h̃	

}√
Nτ [c̃0 + c̃1 e−γ̃ t]

for all t ∈ [Tk, Tk+1). Note that the above inequality holds for
any time interval.

With this relationship, we go back to the inequality (16).
Recalling the definition of W0(t), we resort to Lemma 9.8 in
Khalil (2002) and conclude that zi(t) exponentially converges
into a ball centred at y∗ with its radius proportional to c̃0 ≥ 0.

Next, we consider the tracking part. It is known from the
proof of Theorem 3.1 that

V̇i ≤ − 1
λPi

Vi + 2‖PiBi‖2‖ūi‖2 + k̄c(c̃0 + c̃1 e−γ̃ t)2

for some positive constant k̄c. Again, without loss of generality,
we only have to consider the case when 1

2λPi
Vi ≤ 2‖PiBi‖2‖ūi‖2

for any t ∈ [Tk, Tk+1). In this case, we let θ̃i(t) � ‖ūi(t)‖. By the
Lipschitzness of related terms, we can determine some positive
constants k′

u and k′
c such that

˙̃θi(t)‖ ≤ ‖˙̄ui(t)‖ ≤ k′
u‖ūi(t)‖ + k′

c(c̃0 + c̃1 e−γ̃ t)

Again, we solve this inequality and use the event-triggering
condition. It follows then

‖ūi(t)‖ ≤ ek
′
uτ‖ūi(Tk)‖ + k′

cτ e−k′
uτ (c̃0 + c̃1 e−γ̃Tk)

≤ ek
′
uτ (c0 + c1 e−γ t) + k′

c e
k′
uτ τ (c̃0 + c̃1 e−γ̃ t)

With this inequality, we go back to the derivative of Vi(t) and
resort Lemma 9.8 in Khalil (2002). Thus, Vi(t) exponentially
converges to a neighbourhood of the origin with its radius
proportional to c0 + c̃0. This together with the convergence of
W0(t) completes the proof. �

Remark 3.3: Theorems 3.1 and 3.2 propose twodifferent event-
triggered optimal consensus algorithms for multi-agent sys-
tems (1). Comparedwith existing continuous or event-triggered
optimal consensus results, we consider more general agent
dynamics. Moreover, we do not require the controllers to
instantly react to the received neighbouring information as that
in Kia et al. (2015), S. Liu et al. (2016), Deng et al. (2016),
Yi et al. (2018), Z. Li et al. (2020), and Yu and Chen (2021).
Both the information sharing communication and controller
update happen only if necessary according to the proposed
event-triggered mechanisms. Thus, the proposed optimal con-
sensus designs will definitely save many communication and
computation resources.

4. Simulation

In this section, we provide two examples to illustrate the effec-
tiveness of our event-triggered optimal consensus controllers.

Example 4.1: Consider a group of four mobile robotics mod-
elled by double integrator dynamics ÿi = ui with position yi ∈
R
2 and input ui ∈ R

2.We want to drive all robots to rendezvous
at a common point that minimises the aggregate distance from
their starting points to this final location. The communication
graph among these robots is depicted as Figure 1 with all the
edge weights as 1.

For this purpose, we assign fi(s) = ‖s − yi(0)‖2 to robot i and
let f (s) �

∑4
i=1 ‖s − yi(0)‖2. Then the problem is converted

to an optimal output consensus problem for linear multi-agent
systems (1) with system matrices as follows:

Ai =
[
0 I2
0 0

]
, Bi =

[
0
I2

]
, Ci = [

I2 0
]

Figure 1. Communication digraph G in our examples.
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Figure 2. Profile of yi under the controller (3) in Example 4.1.

Since Assumptions 2.1–3.1 can be easily confirmed, we resort
to Theorem 3.1 and develop distributed algorithms of the
form (3) with rules (5) and (6) to solve the problem.

In simulations, we chooseKi1 = [−I2 − 2I2],Ki2 = I2, α =
1, β = 10, c0 = c̃0 = 0, c1 = c̃1 = 3, γ = 0.5, and γ̃ = 0.3 for
the event-triggered algorithm. Set y(0) = [0 0 6 0 6 2 0 2]� and
all other initial conditions are randomly generated. We list the
profiles of yi in Figure 2. It can be found that all robots indeed
achieve a rendezvous at the optimal position y∗ = [3 1]�.More-
over, we count the numbers of information sharing and control
update at each agent between 0 s and 40 s. They are (208, 194,
330, 141) and (30, 46, 40, 44). Apparently, the numbers of con-
trol update are considerably reduced compared with the case
when wemainly focus on event-triggered communication. This
verifies the efficiency of algorithm (3) to save such computation
resources.

Example 4.2: We further consider another example to show
that the presented event-triggered designs can be applied to
more general multi-agent systems with complex cost functions.
Suppose that the system matrices are heterogeneous as follows:

A1 = 1, B1 = 1, C1 = 1

A2 =
[
0 1

−1 0

]
, B2 =

[
0
1

]
, C2 =

[
1
0

]�

A3 =
⎡
⎣ 0 1 0

−1 0 1
2 0 1

⎤
⎦ , B3 =

⎡
⎣0
1
1

⎤
⎦ , C3 =

⎡
⎣0
1
0

⎤
⎦

�

A4 =
[
0 1
0 0

]
, B4 =

[
0
1

]
, C4 =

[
1
0

]�

They have the same communication graph in Example 1. The
cost functions are chosen as f1(s) = 1

2 (s − 2)2, f2(s) = s2 ln(1 +
s2) + (s + 1)2, f3(s) = ln(e−0.1s + e0.3s) + s2, and f4(s)
= s2

25
√
s2+1

+ (s − 3)2. By some mathematical manipulations,
Assumptions 2.1–3.1 can be practically verified. Here we resort
to Theorem 3.2 to solve the problem by periodic checking
event-triggered algorithm (15).

Figure 3. Profile of zi under the controller (15) in Example 4.2.

Figure 4. Profile of yi under the controller (15) in Example 4.2.

In the simulation, we set the control gain matrices as K11 =
−2.4142, K12 = 1.4142, K21 = [−0.4142 − 1.3522], K22 =
1.4142, K31 = [−2.7331 − 2.3372 − 3.5835], K32 = 3.3166,
K41 = [−1.0000 − 1.7321], andK42 = 1.0000.We use the same
α, β , c0, c̃0, c1, c̃1, γ , and γ̃ for (15), and set τ = 0.02. To
implement the algorithm,we use the forwardEulermethodwith
step size τe = 0.002 s. We list the profiles of zi, yi, and ui in Fig-
ures 3–5. It can be found that the outputs of all agents reach
the expected consensus on the global optimal solution quickly
while the control efforts are bounded and converge to some
steady-states.We also count the numbers of information sharing
and control update at each agent between 0 s and 40 s. Com-
pared with the traditional periodical treatment with tik = t̃ik =
kτe where 4000 times of information sharing communication
and 2000 times of controller update are required, such numbers
by our event-triggered rule (15) for each agent are only (111,
87, 242, 75) and (27, 30, 76, 26), which have been substantially
reduced. These observations confirm the efficiency of our event-
based designs to solve the optimal output consensus problem for
these heterogeneous high-order multi-agent systems.
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Figure 5. Profile of ui under the controller (15) in Example 4.2.

5. Conclusion

We have considered the optimal consensus problem for a group
of heterogeneous linear multi-agent systems. Two Zeno-free
distributed algorithmswere provided relying on event-triggered
controller update and event-triggered communication. The
agents’ outputs are shown to reach an approximate or exact opti-
mal consensus on the expected optimal point specified by the
given optimisation problem under different parameters. In the
future, wemay consider how to extend these designs to the fully
distributed case for nonlinear multi-agent systems or consider
output feedback designs.
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