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Distributed Nash Equilibrium Seeking Dynamics With Discrete Communication
Rui Yu , Yutao Tang , Peng Yi , and Li Li

Abstract— In this brief, we aim to provide a distributed Nash equilib-
rium seeking algorithm in continuous time with discrete communications.
A group of agents are considered playing a continuous-kernel noncooper-
ative game over a network. The agents need to seek the Nash equilibrium
when each player cannot get the overall action profiles in real time,
rather are only able to get information from its networked neighbors.
Meanwhile, a continuous-time dynamics is discussed for the players to
update their variables, but the communications over the network are
only assumed to allow at discrete-time instants, since continuous-time
communications are prohibitive and cumbersome in practice. First,
the periodic communication is considered at a fixed interval, and the
solvability of Nash equilibrium seeking is shown with discrete commu-
nications. Then, an event-trigger communication scheme is proposed to
further reduce the communication rounds. Nevertheless, the event-trigger
communication scheme requires each player continuously monitoring its
local states. To alleviate the monitoring burden, a periodic event detection
mechanism is further developed. The exponential convergence of the
dynamics with the three discrete communication schemes is proven.
Finally, the comparative simulation studies are designed to illustrate
the algorithm performance with different communication schemes and
parameter settings.

Index Terms— Discrete-time communication, event trigger,
Nash equilibrium seeking, periodic communication.

I. INTRODUCTION

Distributed Nash equilibrium seeking for noncooperative games
has been a hot topic during the past few years due to its wide
applications [1], [2], [3], [4]. Each player has a private cost function
depending its own and other players’ actions and pursues at mini-
mizing its own cost function. Plenty of results have been delivered
in this topic for different game types [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14].

Recently, continuous-time Nash equilibrium seeking algorithms
have drawn significant attention due to the fact that many Nash
equilibrium seeking problems can depend on or be implemented
by continuous-time physical plants. For example, a consensus-based
design idea was utilized in [11] to develop continuous-time gradient-
play algorithms to see the Nash equilibrium of some noncooperative
games. By fully exploiting the passivity property of the presented
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algorithm dynamics, the authors showed the effectiveness of their
design under connected undirected communication graphs. A similar
consensus-based protocol was also proposed in [15] along with both
local and nonlocal stability analyses of the algorithms under different
function conditions. Distributed averaging integral algorithms were
further developed in [16] to remove the strong coupling condition
required in [11] via the dynamic gain mechanism. Meanwhile, some
interesting continuous-time designs have been delivered to extend
these algorithms to the case with directed or time-varying graphs [17],
[18], [19], [20], [21].

Note that all the above continuous-time Nash equilibrium seek-
ing algorithms require the real-time decision information from its
neighbors. This implies that the agents must continuously observe
or share information with others through the underlying commu-
nication network, which costs too much and can be prohibitive
in implementation. At the same time, various multiagent designs
with both time-triggered and event-triggered communications have
been derived in the literature (see a survey paper [22]). Inspired
by these achievements [23], [24], [25], [26], [27], it is natural
to ask whether continuous-time communication is necessary for
an effective continuous-time Nash equilibrium seeking algorithm.
If not, we are interested in distributed continuous-time Nash equi-
librium seeking algorithms with different discrete-time communica-
tions to save communication resources. During the revision process,
we have noticed some recent works [28], [29] on this issue for
some specific settings. However, there has been no comprehen-
sive discussion of introducing different discrete-time communication
mechanisms in distributed continuous-time Nash equilibrium seeking
algorithms.

With these questions in mind, we consider a noncooperative game
played by a group of continuous-time agents with discrete commu-
nications. That is, each player can continuously update the action to
minimize its own cost function, while the information sharing is only
allowed at specified discrete-time instants. Note that with this type of
discrete-time communications, the gathered neighboring information
by agents is naturally subject to multiple time delays and jumps. Thus,
the convergent performance of the existing continuous-time Nash
equilibrium seeking algorithms is probably deteriorated and fails to
work in these circumstances. Furthermore, the associated closed-loop
system is basically hybrid, which makes both analysis and design
of our problem more challenging than its pure continuous-time or
discrete-time counterpart.

Motivated by the desire of combing existing continuous-time
results with discrete-time communications, we adopt the distributed
algorithm given in [17] as our starting point and discuss its imple-
mentation with different kinds of discrete-time communications to
solve the formulated problem understanding assumptions.

The contributions of this brief are summarized as follows.
1) We formulate and solve the continuous-time Nash equilib-

rium seeking problem under discrete communications. Com-
pared with the existing continuous-time results, the developed
algorithms remove the continuous communication requirement
among the agents, which can save the communication resources
and enlarge the potential applications of the existing Nash
equilibrium seeking designs.
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2) We systematically develop three different effective schemes to
determine the discrete instants of communication times upon
different needs. For each case, we constructively present some
sufficient parameter choices. All schemes are rigorously proven
to be Zeno-free and retain an exponential convergence rate to
solve the formulated problem.

The rest of this brief is organized as follows. We first give
some preliminaries in Section II and formulate the problem in
Section III. Then, main results with different kinds of communication
schemes are provided in Section IV. Following that, the comparative
simulation studies are presented in Section V. Finally, the conclusions
are given in Section VI.

II. PRELIMINARIES

Denote by R
n the n-dimensional Euclidean space. Let

diag{b1, . . . , bn} be the n-dimensional diagonal matrix with
b1, . . . , bn on the main diagonal and col(a1, . . . , an) �
[a�

1 , . . . , a�
n ]�. ⊗ represents the Kronecker product. Denote

by ‖x‖ the Euclidean norm of a vector x ∈ R
n and by ‖A‖ the

spectral norm of a matrix A ∈ R
n×n . Let 1n (or 1n×m) and 0n (or

0n×m ) represent the n-dimensional vector (or n × m matrix) with all
elements being 1 and 0, respectively.

A function f : R
m → R is said to be convex if f (εx1+(1−ε)x2) ≤

ε f (x1) + (1 − ε) f (x2) for any 0 ≤ ε ≤ 1 and any x1, x2 ∈ R
m .

We say f is strictly convex if the above inequality is strict for any
0 < ε < 1 when x1 �= x2. For a vector-valued function � : R

m →
R

m , we say it is ω-strongly monotone with some constant ω > 0 if
(x1 − x2)

�[�(x1)−�(x2)] ≥ ω‖x1 − x2‖2 for any x1, x2 ∈ R
m . This

vector-valued function � is said to be ϑ-Lipschitz with some constant
ϑ > 0 when ‖�(x1) − �(x2)‖ ≤ ϑ‖x1 − x2‖ for any x1, x2 ∈ R

m .
More details can be found in [30].

We use weighted directed graphs to describe the information shar-
ing structure in a multiagent system [31]. A weighted directed graph
(digraph) is represented by a triplet G = (N , E , A) with the node
set N = {1, . . . , N}, the edge set E ⊆ N × N , and the adjacency
matrix A = [ai j ]N×N . A directed path in this graph is an alternating
sequence of nodes and edges. If there is a directed path between
any two nodes in G, we say this digraph is strongly connected.
The neighbor set of player i is defined as Ni = { j | ( j, i) ∈ E}.
d in

i = ∑N
j=1 ai j represents the in-degree of node i , dout

i = ∑N
j=1 aji

represents the out-degree of node i , and D = diag(d in
1 , . . . , d in

N ).
A directed graph is weight balanced if d in

i = dout
i holds for any

i ∈ N . The Laplacian matrix of G is defined as L � D − A.
When a directed graph is weight balanced, we have L1N = 0N and
1T

N L = 0T
N . Consider a matrix Sym(L) � ((L + LT )/2). It is positive

semidefinite with ordered eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λN .
Moreover, λ2 > 0, if and only if this digraph is strongly connected.
In this case, let M1 = (1/

√
N)1N and M2 ∈ R

N×(N−1) to satisfy
MT

2 M1 = 0N−1, MT
2 M2 = IN−1 , and M2 MT

2 = IN − M1 MT
1 . We have

λ2 IN−1 ≤ MT
2 Sym(L)M2 ≤ λN IN .

III. PROBLEM FORMULATION

Consider a noncooperative game played by N agents described as
follows. Each agent i ∈ N � {1, . . . , N} has an action zi ∈ R and
a local cost function Ji(zi , z−i) depending upon both its own and
the others’ actions with z−i � (z1, . . . , zi−1, zi+1, . . . , zN ) ∈ R

N−1.
In this game, each player selfishly pursues in minimization of its own
cost function by continuously updating its own action profile zi .

Denote this noncooperative game by G � {N , Ji, R}. Its Nash
equilibrium is defined as follows [32].

Definition 1: An action vector z� = col(z�
1, . . . , z�

N ) ∈ R
N is

called a Nash equilibrium of game G � {N , Ji , R} if Ji(z�
i , z�

−i) ≤
Ji(zi , z�

−i ) for any i ∈ N and zi ∈ R.

It is observed that the cost function of each agent will
not be improved by a unilateral change in its own action
at a Nash equilibrium. For simplicity, we denote F(y) �
col(∇1 J1(z1, z−1), . . . , ∇N JN (zN , z−N )) ∈ R

N with ∇i Ji(zi , z−i ) �
(∂/∂zi )Ji(zi , z−i ) ∈ R. Here, F is called the pseudogradient associ-
ated with J1, . . . , JN .

To guarantee the well posedness of our problem, we make the
following assumptions as in [11], [16], and [17].

Assumption 1: For any i ∈ N , the function Ji(zi , z−i ) is twice
continuously differentiable, strictly convex, and radially unbounded
in zi ∈ R for any fixed z−i ∈ R

N−1.
Assumption 2: The pseudogradient F is l-strongly monotone and

l̄-Lipschitz for two constants l, l̄ > 0, that is, for any x1, x2 ∈ R
N

(x1 − x2)
�[F(x1) − F(x2)] ≥ l‖x1 − x2‖2

‖F(x1) − F(x2)‖ ≤ l̄‖x1 − x2‖.
Under Assumptions 1 and 2, we can resort to [33, Propositions

1.4.2 and 2.2.7] and conclude that game G admits a unique Nash equi-
librium z� = col(z�

1, . . . , z�
N ), which satisfies the equation F(z�) = 0.

Note that the cost function depends upon both zi and z−i . To reach
the Nash equilibrium, players are required to get the others’ actions
for update rules. Here, we are interested in the partial-information
case, where each player cannot get the overall action profiles in
real time. Meanwhile, they can communicate with its immediate
neighbors through a communication network described by a graph G
and estimate other players’ actions. Denote by zi

j agent i’s estimate
of agent j ’s strategy. Define zi = col(zi

1, . . . , zi
N ) ∈ R

N with zi
i = zi

and ∇i Ji(zi ) = (∂ Ji/∂zi
i )(z

i ) as the partial gradient of agent i’s cost
function evaluated at its estimate zi . For convenience, an extended
pseudogradient as F(z) = col(∂1 J1(z1), . . . , ∂N JN (zN )) ∈ R

N is
defined for this game.

This Nash equilibrium seeking problem has been partially studied
in past few years, and many interesting continuous-time algorithms
have been derived. In particular, continuous-time algorithms incor-
porating consensus-based estimators have been paid much attention
to in [11], [16], and [17]. Such designs boil down to construct a
continuous-time algorithm of the following form:

żi = gC
i

(
zi , zi

k , z j
i

)
żi

k = hC
ik

(
zi , zi

k , z j
k

)
, j ∈ Ni , k ∈ N \{i} (1)

where gC
i and hC

ik are chosen smooth functions, such that zi can
converge to the expected Nash equilibrium z�

i .
However, distributed algorithms (1) require a continuous infor-

mation flow in the multiagent system. That is, each player has to
continuously communicate with its neighbors and share the real-
time information. This requirement is definitely of a high cost in
communication resources for networked systems. To save resources,
we aim at continuous-time Nash equilibrium seeking algorithms with
discrete-time communications for players to reach the expected Nash
equilibrium.

For this purpose, we suppose each agent is only allowed to push its
own information to its neighbors through the underlying communi-
cation network at some discrete-time instants. Let 0 = t i

0 < t i
1 < · · ·

be the time instants. The pushed action profile by player i during the
time interval [0, +∞) is denoted by ẑi (t) = col(ẑi

1(t), . . . , ẑi
N (t)),

which is given by ẑi
j (t) = zi

j (t
i
k) for each t ∈ [t i

k, t i
k+1). Note that each

player i can continuously update its own action zi (t) and recompute
zi (t) immediately whenever player i receives a new action profile
from one of its neighbors.

Then, our Nash equilibrium seeking problem with discrete com-
munications is formulated as follows: Given function Ji and graph G,
find smooth functions gC

i and hC
ik and communication time instants
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{t i
k}, such that, from any initial condition, the trajectory of the

following dynamic system:
żi = gC

i

(
zi , zi

k, ẑ j
i

)
żi

k = hC
ik

(
zi , zi

k, ẑ j
k

)
, j ∈ Ni , k ∈ N \{i} (2)

is well defined over the time interval [0, +∞) and satisfies that
limt→+∞ zi (t) = z�

i with z� � col(z�
1, . . . , z�

N ) being a Nash
equilibrium of game G � {N , Ji , R}.

Compared with (1), the received information from its neighbors
by each agent in (2) is not real time and subject to some time delays
determined by the time instants {t i

k}. The main goal of this brief is
to develop effective distributed Nash equilibrium seeking algorithms
in continuous time for different discrete communication settings.

Before the main results, we list two assumptions to ensure the
solvability of our problem.

Assumption 3: Digraph G is weight balanced and strongly con-
nected.

Assumption 4: The extended pseudogradient F is lF -Lipschitz
with lF > 0, that is, for any x1, x2 ∈ R

N2

‖F(x1) − F(x2)‖ ≤ lF‖x1 − x2‖.
Assumption 3 provides a sufficient connectivity of the communi-

cation network, and Assumption 4 on the extended pseudogradient
F extends the Lipschitz continuity of F to the corresponding aug-
mented space. These two assumptions have been widely made in the
literature [11], [16], [17].

IV. MAIN RESULT

In this section, we will first present a periodic mechanism to
demonstrate the validity of distributed continuous-time algorithm
with discrete-time communications and then provide more efficient
event-triggered schemes to save both communication and computa-
tion resources.

Motivated by the gradient-play rules in [11], [15], and [17], we are
interested in the following dynamics to solve our problem:

żi = −α

N∑
j=1

ai j

(
zi − ẑ j

i

) − ∇i Ji(zi )

żi
k = −α

N∑
j=1

ai j

(
zi

k − ẑ j
k

)
, k ∈ N \{i} (3)

where ẑ j
i is the pushed version of z j

i by agent j to its neighbors, and
the constant α > 0 is to be specified later.

Letting Ri = col(0i−1, 1, 0N−i ) gives

żi = −α

N∑
j=1

ai j (zi − ẑ j ) − Ri∇i Ji(zi), j ∈ N \{i}

with ẑ j is the pushed version of z j by agent j .
Denoting ei (t) = ẑi (t) − zi (t) and e = col(e1, . . . , eN ), we can

further put it into a compact form

ż = −αLẑ + α Ae−R F(z)

with R = diag(R1, . . . , RN ), z = col(z1, . . . , zN ), ẑ =
col(ẑ1, . . . , ẑN ), L = L ⊗ IN , and A = A ⊗ IN .

A. Solvability With Periodic Communication

In this section, we start with the periodic communication case to
confirm the effectiveness of algorithm (3).

We suppose all players will push their information to the neighbors
through the communication network periodically at t i

k = kτ for a
constant τ > 0 to be specified later.

Let cmax = max{‖A‖, ‖L‖} and l = max{l̄, lF }, and consider the
symmetric matrix

Aα =

⎡
⎢⎢⎣

l

N
− l√

N

− l√
N

αλ2 − l

⎤
⎥⎥⎦.

It is verified to be positive definite when α > (1/λ2)((l2/l) + l).
In this case, we denote by ν the minimal eigenvalue of Aα.

Theorem 1: Suppose Assumptions 1–3 hold and α >
(1/λ2)((l2/l) + l). Then, the Nash equilibrium seeking problem is
exponentially solved by algorithm (3) with t i

k = kτ if

0 < τ ≤ ν

(2αcmax + l)(2αcmax + ν)
. (4)

Proof: Denoting z� = 1 ⊗ z� and z̃ = z − z�, we perform the
coordinate transformation

z̄1 = (
MT

1 ⊗ IN

)
z̃, z̄2 = (

MT
2 ⊗ IN

)
z̃.

It follows then:
˙̄z1 = α

[(
MT

1 A
) ⊗ IN

]
e − (

MT
1 ⊗ IN

)
R �

˙̄z2 = −α
[(

MT
2 L M2

) ⊗ IN

]
z̄2 − (

MT
2 ⊗ IN

)
R �

+ α
[(

MT
2 A

) ⊗ IN

]
e − α

[(
MT

2 L
) ⊗ IN

]
e (5)

where � � F(z) − F(z�).
To prove this theorem, we use tk short for t i

k without confusions
and select a quadratic Lyapunov function candidate for system (5) as
follows:

V (z̄1, z̄2) = 1

2
(‖z̄1‖2 + ‖z̄2‖2).

During the interval [tk, tk+1), its time derivative along the trajectory
of system (5) is given as follows:

V̇ = −z̃T R � −αz̄T
2 [(MT

2 Sym(L)M2) ⊗ IN ]z̄2

+ αz̃T Ae − αz̄T
2 [(MT

2 L) ⊗ IN ]e
≤ −z̃T R � −αλ2‖z̄2‖2 + αcmax‖z̃‖‖e‖ + αcmax‖z̄2‖‖e‖
≤ −[‖z̄1‖ ‖z̄2‖

]
Aα

[‖z̄1‖
‖z̄2‖

]
+ αcmax‖z̃‖‖e‖

+ αcmax‖z̄2‖‖e‖
≤ −2νV + αcmax‖z̃‖‖e‖ + αcmax‖z̄2‖‖e‖

where we use the fact ‖M2‖ = ‖R‖ = 1 by definition and handle the
term −z̃T R� as that in [17].

Then, by Young’s inequality, we have

V̇ ≤ −1

2
νV +

(
2α2c2

max

ν
‖e‖2 − 1

2
νV

)
. (6)

We are going to show that any chosen τ satisfying condition (4) can
ensure ((2α2c2

max)/ν)‖e‖2 ≤ (1/2)νV , or equivalently, (‖e‖/‖H‖) ≤
(ν/(2αcmax)) with H = col(z̄1, z̄2) during each time interval [tk, tk+1).

To this end, we denote y(t) = (‖e‖/‖H‖) and take its derivative
during this interval and obtain that

d

dt

‖e‖
‖H‖ = d

dt

(eT e)
1
2

(H T H)
1
2

= (eT e)−
1
2eT ė(H T H)

1
2 −(H T H)−

1
2 H T Ḣ(eT e)

1
2

H T H

= eT ė
‖e‖‖H‖ − ‖e‖H T Ḣ

‖H‖3
(7)
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where we use the facts that ė(t) = −ż(t) = −˙̃z(t) and z̃(t) = (M1 ⊗
IN )z̄1(t) + (M2 ⊗ IN )z̄2(t). Note that

‖ė(t)‖ = ‖˙̃z(t)‖ ≤ ‖Ḣ(t)‖
≤ l‖z̄‖ + αcmax‖z̄2‖ + 2αcmax‖e(t)‖
≤ (2αcmax + l)(‖H(t)‖ + ‖e(t)‖).

This together with (7) implies that

ẏ ≤ (1 + y)
‖Ḣ‖
‖H‖ ≤ (2αcmax + l)(1 + y)2.

Let us consider the differential equation φ̇ = (2αcmax +
l)(1 + φ)2 with φ(t0) = 0. Its solution is φ(t, t0) =
((2αcmax + l)(t − t0))/(1 − (2αcmax + l)(t − t0)). Since y(tk, tk) =
0, we recall the comparison lemma in [34] and conclude that

y(t, tk) ≤ (2αcmax + l)(t − tk)

1 − (2αcmax + l)(t − tk)
.

Under condition (4), it follows for t ∈ [tk, tk+1) that:
‖e(t)‖
‖H(t)‖ ≤ y(tk + τ, tk) ≤ (2αcmax + l)τ

1 − (2αcmax + l)τ
= ν

2αcmax
.

This jointly with (6) provides us

V̇ ≤ −ν

2
V

for any t ∈ [0, ∞). Thus, according to [34, Th. 4.10], we can con-
clude that z̄(t) → 0 as t → ∞, or equivalently, zi (t) exponentially
converges to z� as t → ∞. The proof is complete.

Remark 1: This theorem gives an affirmative answer that the Nash
equilibrium seeking problem is indeed solvable by continuous-time
algorithms with discrete-time communications. Compared with plenty
of continuous-time algorithms in the literature, this rule (3) does
not require agents to share their information continuously, which
definitely reduces traffic on the communication network.

Remark 2: The criterion for selecting control gain α and periodic
constant τ reveals the natural trade-off between the control effort
and graph algebraic connectivity. Note that the choice of α and τ

in this theorem requires some global knowledge, e.g., λ2 and cmax.
In practice, we may estimate them beforehand to implement this
algorithm [35].

B. Solvability With Event-Triggered Communication

In this section, we consider event-triggered aperiodic communica-
tion schemes to solve our problem. In contrast to the previous periodic
scheme, event-triggered schemes may result in a more efficient use
of the resources.

Motivated by the developed designs in [22] and [36], we introduce
a triggering function as follows:

fi (t, ei(t)) = ‖ei(t)‖ − (c0 + c1e−βt )

for player i with parameters c0, c1 ≥ 0, c0 + c1 > 0, and β > 0 to
be specified later.

During the game, each player i continuously monitors its current
state and evaluates the function fi . It will push its current profile to
the neighbors when fi (t, ei (t)) ≤ 0 is not satisfied. That is, for a
given time t i

k , the next triggering time can be iteratively determined
according to

t i
k+1 = inf

{
t ∈ [

t i
k, +∞) | fi (t, ei(t)) > 0

}
. (8)

We present another theorem on the solvability of our problem with
event-triggered discrete-time communications.

Theorem 2: Suppose Assumptions 1–3 hold and let α >

(1/λ2)((l2/l) + l), 0 < β < ν. Then, algorithm (3) with commu-
nication time instants determined by (8) is free from Zeno behaviors.
Moreover, there exists a class K function γ , such that each zi will
converge into a ball centered at z� with radius γ (c0).

Proof: Since ‖ei(t)‖ is enforced to satisfy fi (t, ei (t)) = ‖ei (t)‖−
(c0 + c1e−βt ) ≤ 0, the inequality (6) can be strengthened as follows:

V̇ ≤ −νV + �(c0 + c1e−βt )2 (9)

where � = ((2Nα2c2
max)/ν).

Solving the differential inequality (9), we have

V (t) ≤ V (0)e−νt + �

∫ t

0
e−ν(t−τ )(c0 + c1e−βt )2d τ. (10)

From this, we can easily obtain that there must be a class K
function γ̃ (s) = (� s2/ν), such that V (t) is ultimately bounded with
a tolerance γ̃ (c0). Recalling the definition of V , this implies that
each zi will converge to a ball center at z� with a radius γ (c0) with
γ (s) = √

γ̃ (s).
Then, we will rule out the Zeno behaviors. It suffices to show

that the length of the interevent intervals is larger than some positive
constant τ0.

Assume that agent i triggers at the time t �. It follows by (7) that
ei (t �) = 0 and fi(t �, ei (t �)) ≤ 0. Between two events, the time
derivative of ei(t) is given by

ėi(t) = αLei (t) − αAei (t) + αL z̃i (t) + Ri∇i Ji(z̃i ).

Using the Lipschitzness of Ji and ‖ei (t)‖ ≤ (c0 + c1e−βt ), there
must be positive constants c2 and c3, such that

‖ėi (t)‖ ≤ c2‖z̃i ‖ + c3(c0 + c1e−βt ). (11)

Then, we consider two different cases, i.e., c0 �= 0 and c0 = 0.
Case I: Suppose c0 �= 0.
From the boundedness of z̃, there must be a positive constant c4,

such that

‖ėi(t)‖ ≤ c2c4 + c3(c0 + c1).

This jointly with the fact ei (t) = ∫ t
t� ėi (s)ds gives

‖ei(t)‖ ≤
∫ t

t�
‖ėi(s)‖ds ≤ [c2c4 + c3(c0 + c1)](t − t �).

Since the next event is not triggered before fi (t, ei (t)) = ‖ei(t)‖−
(c0 + c1e−βt ) crosses zero, this does not happen before ‖ei(t)‖ ≤ c0.
Thus, a lower bound for the interevent interval is given as

τ01 = c0

c2c4 + c3(c0 + c1)
> 0.

Case II: Suppose c0 = 0.
In this case, we go back to inequality (11). By (10), we can

strengthen it as follows:
‖ėi(t)‖ ≤ c5e−νt + c3c1e−βt ≤ c5e−νt� + c3c1e−βt�

for some positive constant c5 > 0. Then, we have

‖ei(t)‖ ≤ [c5e−νt� + c3c1e−βt� ](t − t �)

≤ e−βt� [c5e−(ν−β)t� + c3c1](t − t �)

≤ e−βt� [c5 + c3c1](t − t �).

Again, the next event is triggered as soon as ‖ei (t)‖ = c1e−βt .
We consider the equation (c5 + c3c1)s = c1e−βs . It has a unique
positive root τ02. Moreover, for any s ∈ (0, τ002), (c5 + c3c1)s <
c1e−βs . Thus, ‖ei (t)‖ ≤ e−βt� (c5 + c3c1)(t − t �) < c1e−βt . In other
words, ‖ei(t)‖ > c1e−βt will not happen before t � + τ02. Thus,
τ02 > 0 is a lower bound for the interevent interval.
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Therefore, we have excluded the possible Zeno behaviors in both
cases. This proof is complete.

Remark 3: In contrast to the periodic communications, the
event-triggered communication mechanism implementations tie the
determination of each player’s communication times to their own
current states, thus saving network resources more effectively.

C. Solvability With Periodic Event-Triggered Communication

In this section, we propose an enhanced version of the preceding
event-triggered scheme where players do not have to monitor their
triggering functions continuously. To save space, we only consider
the case when c0 = 0.

Motivated by periodic designs in Theorem 1, we assume player i
only evaluates function fi at the time instant tk = kτ for a constant
τ > 0, that is,

t i
k+1 = inf

{
tk′

∣∣tk′ > t i
k& fi (tk′ , ei(tk′ )) > 0

}
(12)

with k ∈ Z
+. Similar designs have been developed in [22] to

solve the multiagent consensus problem. Compared with rule (2) for
continuous-time dynamics, each agent only monitors the triggering
condition in a designed time sequence to decide whether to update its
pushed action. To this end, the periodic event-triggered scheme can
alleviate the monitoring burden through reducing local evaluation.

In this case, the algorithm is naturally free from Zeno behavior.
The solvability of our problem under this periodic event-triggered
communication is given as follows.

Theorem 3: Suppose Assumptions 1–3 hold. We let α >
(1/λ2)((l2/l) + l), c0 = 0, c1 > 0, 0 < β < ν, and τ satisfying (4).
Then, the Nash equilibrium seeking problem is exponentially solved
by algorithm (3) with the periodic event-triggered communication
specified by (12).

Proof: Similar to the proofs of Theorems 1 and 2, we consider
the behavior of V = (1/2)(||z̄1||2 + ||z̄2||2) during each time interval
t ∈ [t i

k, t i
k+1).

By the arguments in Theorem 1, the following inequality holds for
any t ∈ [t i

k, t i
k+1):

V̇ ≤ −1

2
νV +

(
2α2c2

max

ν
‖e(t)‖2 − 1

2
νV

)
.

In the following, we only have to consider the case when

2α2c2
max

ν
‖e(t)‖2 ≥ ν

2
V

holds over this time interval. Otherwise, there must be some time
t ′ ∈ [t i

k, t i
k+1) at which

2α2c2
max

ν
‖e(t ′)‖2 <

ν

2
V (z̄1(t

′), z̄2(t
′))

happens. This provides us V̇ (t ′) ≤ −(ν/2)V (t ′), which does not
deteriorate the exponential convergence of V .

Suppose ((2α2c2
max)/ν)‖e(t)‖2 ≥ (ν/2)V . By the definition of V ,

we have ((2α2c2
max)/ν)‖e(t)‖2 ≥ (ν/4)‖z̃(t)‖2. Hence,

‖z̃(t)‖ ≤ 2
√

2αcmax

ν
‖e(t)‖.

Therefore, we further have

‖ė(t)‖ ≤ 2αcmax‖e(t)‖ + (αcmax + l)‖z̃(t)‖
≤ 2αcmax‖e(t)‖ + (αcmax + l)

2
√

2αcmax

ν
‖e(t)‖

≤ 2αcmax

(
1 +

√
2(αcmax + l)

ν

)
‖e(t)‖.

From this, we consider the evolution of ‖e(t)‖. Denote

c6 � 2αcmax

(
1 +

√
2(αcmax + l)

ν

)
, θ(t) = ‖e(t)‖

for short. It follows then:

θ̇ = d(eT e)
1
2

dt
= eT ė

(eT e)
1
2

≤ c6θ.

That is, ‖e(t)‖ ≤ ec6(t−t ′)‖e(t ′)‖ holds for this t > t ′ ≥ t i
k in the

interval [t i
k, t i

k+1).
For any fixed t , we let t ′ = k ′(t)τ with k ′(t) being the largest

integer, such that k ′τ ≤ t . It follows then t ≥ t ′(t) > t − τ . Since
the event is not triggered at t ′, we have ||e(t ′)|| ≤ √

Nc1e−βt ′ . Then

‖e(t) ≤ ec6τ‖e(t ′)‖ ≤ ec6τ
√

Nc1e−βt ′ ≤ √
Nc1e(c6+β)τ e−βt

for any t ∈ [t i
k, t i

k+1) with N the number of players. It follows then
for all t ∈ [tk, tk+1):

V̇ ≤ −νV + � N
(
c1e(c6+β)τ e−βt

)2

where � is defined as in the proof of Theorem 2. From this, we can
directly solve this differential inequality and complete the proof.

Remark 4: The choice of τ is a sufficient condition in this mech-
anism (12). In practice, we may select a larger period τ to reduce
the number of function evaluation.

Remark 5: In both event-triggered strategies, the communication
only occurs when the triggering function is violated to save communi-
cation resources. For a special choice c0 = 0, c1 > 0, and 0 < β < ν,
the Nash equilibrium seeking problem is exponentially solved, while
the interval between any contiguous time instants is lower bounded
by a positive constant, which rules out any Zeno behavior.

V. SIMULATION

This section provides the comparative simulation studies to
illustrate the algorithm performance with different communication
schemes and parameter settings.

Consider the Nash–Cournot game played by N industry firms in
a market under an undirected cycle graph. These rival firms produce
a homogeneous product, and each attempts to maximize profits by
choosing how much to produce. We denote the industry output of firm
i by zi . Its production cost per unit is Ci . The price of this product
is assumed to be f (z) = D − 0.1

∑N
i=1 zi + 0.45zi with demand

D > 0 and z = col(z1, . . . , zN ). Then, for firm i , to maximize
its own profit is to minimize an objective function of the form
Ji(z) = Ci zi−zi f (z). It can be easily found that these firms play
a nonoperative game. In our simulations, we let N = 5, Ci = 24i ,
and D = 1008.

All assumptions in this brief can be verified with the unique Nash
equilibrium as (204, 180, 156, 132, 108). To demonstrate the effec-
tiveness of the algorithm (3), we set α = 3 and τ = 0.05 s in periodic
communication, and set c0 = 0, c1 = 10, and β = 0.35 in both pure
event-triggered and periodic event-triggered communications.

The trajectories of zi with different discrete-time communi-
cations are presented in Fig. 1, and the corresponding error
(ei(t) = z�

i − zi , i = 1, 3, 5) curves with different discrete-time
communications are shown in Fig. 2. It is observed that our problem
is exponentially solved in all cases. We also show the communication
time instants with different mechanisms in Fig. 3. The number of
communications required in these simulations is 600, 326, and 236,
in turn, for these three different mechanisms. We can find that the
event-triggered communication indeed save communication resources
in our example. These observations verify the effectiveness of our
preceding designs.
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Fig. 1. Trajectories of zi with different discrete-time communications.

Fig. 2. Error curves with different discrete communication methods.

Fig. 3. Communication time instants with different mechanisms.

Fig. 4. Convergence errors under rule (8) with different values of c0.

Furthermore, the convergence error ranges are exhibited for
the proposed algorithm with pure event-trigger communication
by designing different parameters c0 in Fig. 4. Note that both
event-triggered communications have the same property in terms of
parameter c0. When c0 = 0, 0.001, and 0.01, respectively, it can
be seen that the convergence error ranges are directly proportional
to the parameter c0, which is consistent with the theoretical error
radius γ (c0). Meanwhile, the number of triggered times is 7381,
3540, and 1847, which is inversely proportional to the parameter c0.
These conclusions support and complement Theorem 2.

VI. CONCLUSION

In this brief, we have investigated the solvability of the distributed
Nash equilibrium seeking problem by the continuous-time algorithms
with different discrete-time communications. Among the novelties
of our proposed algorithms, we first need to emphasize that this
work does not require each agent to continuously communicate with

its neighbors. Then, we highlight that three different discrete-time
communication schemes have been thoroughly studied to ensure that
all agents trajectories exponentially converge to the expected Nash
equilibrium free from Zeno behaviors. We may extend the designs to
the constrained case in future work.
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[20] J. Koshal, A. Nedić, and U. V. Shanbhag, “Distributed algorithms
for aggregative games on graphs,” Operations Res., vol. 64, no. 3,
pp. 680–704, Jun. 2016.

[21] Y. Zhu, W. Yu, G. Wen, and G. Chen, “Distributed Nash equilibrium
seeking in an aggregative game on a directed graph,” IEEE Trans. Autom.
Control, vol. 66, no. 6, pp. 2746–2753, Jun. 2021.

[22] C. Nowzari, E. Garcia, and J. Cortés, “Event-triggered communication
and control of networked systems for multi-agent consensus,” Automat-
ica, vol. 105, pp. 1–27, Jul. 2019.

[23] X. Yi, W. Lu, and T. Chen, “Pull-based distributed event-triggered
consensus for multiagent systems with directed topologies,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 1, pp. 71–79, Jan. 2017.

[24] X. Meng, L. Xie, and Y. Soh, “Asynchronous periodic event-triggered
consensus for multi-agent systems,” Automatica, vol. 84, pp. 214–220,
Oct. 2017.

[25] W. Zhao, W. Yu, and H. Zhang, “Event-triggered optimal consensus
tracking control for multi-agent systems with unknown internal states
and disturbances,” Nonlinear Anal., Hybrid Syst., vol. 33, pp. 227–248,
Aug. 2019.

[26] X. Cao and T. Basar, “Decentralized online convex optimization with
event-triggered communications,” IEEE Trans. Signal Process., vol. 69,
pp. 284–299, 2021.

[27] H. Dai, X. Fang, and W. Chen, “Distributed event-triggered algorithms
for a class of convex optimization problems over directed networks,”
Automatica, vol. 122, Jun. 2020, Art. no. 109256.

[28] R. Li and X. Mu, “Event-triggered distributed algorithm for searching
general Nash equilibrium with general step-size,” Optim. Control Appl.
Methods, vol. 42, no. 2, pp. 526–547, Mar. 2021.

[29] K. Zhang, X. Fang, D. Wang, Y. Lv, and X. Yu, “Distributed
Nash equilibrium seeking under event-triggered mechanism,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 11, pp. 3441–3445,
Nov. 2021.

[30] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analysis and
Optimization. Nashua, NH, USA: Athena Scientific, 2003.

[31] C. Godsil and G. Royle, Algebraic Graph Theory. New York, NY, USA:
Springer, 2001.

[32] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory,
2nd ed. Philadelphia, PA, USA: SIAM, 1999.

[33] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities
and Complementarity Problems. Cham, Switzerland: Springer, 2003.

[34] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[35] N. Lynch, Distributed Algorithms. San Mateo, CA, USA:
Morgan Kaufmann, 1997.

[36] G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Event-based
broadcasting for multi-agent average consensus,” Automatica, vol. 49,
no. 1, pp. 245–252, Jan. 2013.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on March 01,2024 at 01:06:47 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


