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Abstract
In this paper, we study a distributedmodel to cooperatively compute variational inequalities over time-varying directed graphs.
Here, each agent has access to a part of the full mapping and holds a local view of the global set constraint. By virtue of an
auxiliary vector to compensate the graph imbalance, we propose a consensus-based distributed projection algorithm relying
on local computation and communication at each agent. We show the convergence of this algorithm over uniformly jointly
strongly connected unbalanced digraphs with nonidentical local constraints. We also provide a numerical example to illustrate
the effectiveness of our algorithm.

Keywords Variational inequality · Distributed computation · Multi-agent system · Weight-unbalanced graph

1 Introduction

The variational inequality problem VI(K , F) is to find a
vector x ∈ K , such that

( y − x)TF(x) ≥ 0, ∀ y ∈ K (1)
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for a given mapping F : K → R
N and set K ⊂ R

N .
This problem provides us with a unified framework to study
various kinds of practical problems, such as traffic equilib-
riummodels, energy markets, and communication networks.
Many important results including both the theoretical and
algorithmic foundations have been delivered in [1, 2].

Classical algorithms for solving the variational inequality
problem are centralized in the sense that all processing and
storage operations of problem data are executed on a single
computing unit. In the era of Big Data, the required amount
of computations may be too large to be done by a central-
ized unit due to its limited capacity. Also, there are many
scenarios where the problem data are distributed at widely
dispersed locations, and the traditional parallel framework
cannot be utilized. Thus, it is of particular importance to
develop decentralized/distributed algorithms involvingmany
networked computing units to solve the variational inequality
problem.

Although pioneered attempts to cooperatively solve
VI(K , F) were made in the 1980s [3], this topic has gained
renewed interests due to its application in many recent dis-
tributed computing problems. For example, as pointed out in
[4], the intensively studied distributed optimization problem
could be converted into some equivalent variational inequali-
ties. Hence, different distributed optimization algorithms can
be developed by extending classical variational inequality
solvers to the distributed case. Although not often explicitly

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11768-024-00223-9&domain=pdf


432 Y. Zhang et al.

stated, the distributedness of the corresponding variational
inequalities in these distributed optimization problems are
from the separable structure of the mapping, where each
agent is assumed to know only one component [5]. Then,
the information-sharing graph becomes a crucial factor and
has been extensively studied in designing efficient dis-
tributed algorithms. Following this line, [6] considered some
Minty variational inequalities and developed decentralized
algorithms by extending classical stochastic extragradient
methods. They also showed the convergence of the proposed
algorithms under time-varying undirected graphs. Addition-
ally, [7] further incorporated compressed communication
toward communication-efficient algorithms but for a special
fixed star-like graph, which was later extended to any fixed
connected undirected graph in [8].

Meanwhile, the distributed computation of VI(K , F)

may come from the partition of decision variables at different
computing units, as shown in [3]. Recently, this comput-
ing model has found its applications in partial-decision
information network games. For example, [9] related a non-
cooperative game to some variational inequalities as that in
[10] and then developed gossip-based algorithms to deter-
mine the Nash equilibrium of this game under connected
undirected graphs. Typically, the variational inequalities thus
obtained are non-separable with different local constraints.
Hence, their solvability over general directed graphs can be
more challenging than the preceding separable model from
the perspective of distributed optimization. In fact, although
many important algorithms have been developed for this type
of variational inequality problem in the nameof (generalized)
Nash equilibrium seeking [11–14], most existing results are
limited to fixed graphs except some very recent works [15,
16] considering time-varying undirected or weight-balanced
directed graphs.

Motivated by these observations, we consider the varia-
tional inequality problemcorresponding tomultiple decision-
makers (or agents). Here, each agent only knows a part of
the full mapping and maintains a subset of the whole deci-
sion variables as well as nonidentical local set constraints.
Moreover, we are interested in distributed algorithms over
general time-varying directed graphs which can be weight-
unbalanced. To solve these variational inequalities, we first
decompose them into several coupled variational inequities
of smaller dimensions. Then, we develop a consensus-based
projection algorithm to solve them in a distributed way. By
incorporating an auxiliary time-varying vector to compen-
sate the graph imbalance, we show the convergence of our
algorithm with different stepsizes under standard assump-
tions.

The contributions of this paper can be summarized as fol-
lows:

• We present a novel distributed computing model to
solve the variational inequality problem. Different from
existing formulations [6–8], the distributedness of our
problem comes from the partition of decision variables
rather than the summation structure of the correspond-
ing mapping. We are not aware of any earlier general
discussion on this model in distributed settings.

• We develop a novel distributed projection algorithm
to solve the formulated variational inequality problem
over uniformly jointly strongly connected interaction
digraphs. Specially, the proposed algorithm can effec-
tively solve the Nash equilibrium seeking problem con-
sidered in [14–17] without requiring the graph to be
weight-balanced.

The rest of this paper is organized as follows: We first
introduce some preliminaries in Sect. 2. Then, we give the
formulation of our problem and present themain algorithm in
Sect. 3. After that, the convergence analysis of our algorithm
is provided in Sect. 4 under different stepsize conditions
along with further discussions in Sect. 5. A simulation exam-
ple and some concluding remarks are finally given in Sects. 6
and 7.

2 Preliminaries

This section introduces some preliminaries about convex
analysis and graph theory for the following analysis.

2.1 Convex analysis

Let Rn be n-dimensional Euclidean space and R
n×m be the

set of all n × m matrices with all entries in R. Denote the set
containing all nonnegative integers by Z+. We always use
bold math symbols to represent column vectors or vector-
valued mappings. 0n (or 0n×m) represent the all-zero vector
in R

n (or the all-zero matrix in R
n×m). We use In be the n-

dimensional identitymatrix.Wemayomit the subscriptwhen
it is self-evident. For a vector x (or a matrix A), ‖x‖ (or ‖A‖)
represents its Euclidean norm (or spectral norm). A square
matrix W is said to be row-stochastic if it has nonnegative
entries with its row summing to one. A matrix W is column-
stochastic if its transpose is row-stochastic. W is said to be
doubly stochastic if it is both row- and column-stochastic.

For a given set K ⊂ R
n , it is convex if, for any two points

x, y ∈ K , the line segment between them is still in K . A
function f : K → R is said to be convex on K if its epigraph
epi f � {(x, t)|x ∈ K , t ∈ R, t ≥ f (x)} is convex as a
subset ofRn+1. Define the distance between any point x and
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set K as dK (x) = inf{‖x − y‖ | y ∈ K }. When K is closed
and convex, it is well known that dK (x) = ‖x − ΠK (x)‖
with ΠK (x) the projection of x ∈ R

n on K .
Consider a vector-valued mapping F : K → R

n . We say
it is Lipschitz continuous with � > 0 (or simply �-Lipschitz)
on K if ‖F(x) − F( y)‖ ≤ �‖x − y‖ for ∀x, y ∈ K . The
mapping ismonotone on K if [F(x)−F( y)]T(x− y) ≥ 0 for
∀x, y ∈ K . F is strictly monotone if [F(x) − F( y)]T(x −
y) = 0 only happens when x = y. If F is strictly monotone
on K , then VI(K , F) has at most one solution. More details
can be found in [2].

The following lemma is a direct application of Jensen’s
inequality and can also be found in the multi-agent literature,
e.g., [18].

Lemma 1 Let K ⊂ R
n be a nonempty closed convex

set and a1, . . . , am be any scalars, such that ai ≥ 0
and

∑m
i=1 ai = 1. Then, for any x1, . . . , xm ∈ R

n,
‖∑m

i=1 ai xi −ΠK (
∑m

i=1 ai xi )‖ ≤ ∑m
i=1 ai‖xi −ΠK (xi )‖.

2.2 Graph theory

A directed graph (digraph) is described by G = (V, E) with
node setV and edge set E ⊂ V×V . The ordered pair (i, j) ∈
E is a directed edge of this digraph from node i to node j .
A self-loop is an edge from any node to itself. A digraph
is strongly connected if there exists a directed path between
any two nodes. The composition of two digraphs Gp and Gq

with the same node set is defined as Gp ◦Gq = (V, E)where
E = {(i, j) | ∃k ∈ V, such that (i, k) ∈ Ep, (k, j) ∈ Eq}.
The definition of graph composition can extend to any finite
sequence of digraphs with the same node set. An infinite
directed graph sequence {Gk} is said to be uniformly jointly
strongly connected if there exists a positive integer B, such
that the composed graph Gk+B−1 ◦ · · ·Gk+1 ◦ Gk is strongly
connected for any k ≥ 0.

3 Computingmodel and algorithm

Consider the variational inequality problem (1). Suppose that
the set K is a Cartesian product K = K1×· · ·×Kn with each
Ki ⊂ R

Ni a compact convex set and
∑n

i=1 Ni = N . Then,
the mapping F and vector x can be accordingly decomposed
as F = col(F1, . . . , Fn) and x = col(x1, . . . , xn) with
compatible dimensions.

The following assumption guarantees the well-posedness
of VI(K , F) [2].

Assumption 1 The mapping F is strictly monotone and l-
Lipschitz for some l > 0.

Assume that we have n networked agents and each agent i
only knows Fi and Ki .We are going to develop iterative rules

for them to cooperatively solve (1). A key observation on our
problem is that: A vector x∗ = col(x∗

1 , . . . , x∗
n ) solves (1) if

and only if for each i ∈ N � {1, . . . , n}, we have x∗
i ∈ Ki

and

(xi − x∗
i )TFi (x∗) ≥ 0, ∀xi ∈ Ki . (2)

In this way, we can decompose the considered variational
inequalities (1) into n coupled variational inequalities of
smaller dimensions. This motivates us to augment classical
algorithms with a consensus-based mechanism to solve the
problem.

For this purpose, we assume that each agent maintains an
estimate xi (k) ∈ R

N of the solution to VI(K , F) at time
instant k ∈ Z+. They can collect and share the estimates
with other agents through a time-varying interaction network
described byGk = {N , E(k)}. A directed edge (i, j) ∈ E(k)

means that agent j can receive the estimate of agent i at time
k. Denote the neighbor set of agent i at time k by Ni (k).
It is defined by Ni (k) � { j ∈ N | ( j, i) ∈ E(k)}. Then,
Ni (k) represents all the information source of agent i at time
k. Certainly, the mapping Fi and set Ki are private to agent
i and prohibitive to be shared with others.

Let x̂i
(k) = ∑n

j=1 wi j (k)x j (k) be the aggregate esti-
mate of the solution to (1) at agent i with wi j (k) some
nonnegative weight of agent i on agent j’s estimate if there
exists a directed edge ( j, i) ∈ E(k). Correspondingly, we
let x̌i

(k) = ∑n
j=1 w j i (k)xi (k) be the overall estimate that

agent i pushes into the network. These two variables rep-
resent how agent i collects and distributes the local recent
computing progress in solving (1). Put all weights at time k
into a matrix W (k). Assume that matrix W (k) is compatible
with graph Gk for any k ∈ Z+ in the sense that wi j (k) > 0 if
and only if j ∈ Ni (k). For time-varying interaction graphs,
most aforementioned results require the graph to be either
undirected or directed but weight-balanced. Thus, we always
have x̂i

(k) = x̌i
(k) for any k. Nevertheless, this implies that

eachmatrix W (k) should be doubly stochastic, whichmay be
too restrictive in practical scenarios with possible interaction
uncertainties and asymmetries.

In this paper, we focus on the solvability of the variational
inequality problem (1) under general graph conditions as fol-
lows:

Assumption 2 {Gk} is a sequence of digraphs with self-loops
and uniformly jointly strongly connected for some integer
� > 0.

Assumption 3 For any k ∈ Z+, matrix W (k) is row-
stochastic with wi j (k) ≥ η if wi j (k) > 0 for some scalar
0 < η < 1.

Under Assumption 3, the collected and distributed esti-
mates x̂i

(k) and x̌i
(k) at agent i are generally not equal
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even when all agents have reached the expected solution.
To address this issue, we modify classical projection meth-
ods to solve the local variational inequalities (2) and propose
a distributed algorithm as follows:

xi (k + 1) = ΠK i

(

x̂i
(k) − τk

Ri Fi (x̂
i
(k))

zi
i (k)

)

,

zi (k + 1) =
n∑

j=1
wi j (k)z j (k), (3)

where K i = R

∑i−1
j=1 N j × Ki × R

∑n
j=i+1 N j , Ri ∈ R

N×Ni is
defined as Ri = col(0∑k−1

j=1 N j ×Ni
, INi , 0

∑n
j=k+1 N j ×Ni

), τk >

0 is the stepsize, and zi (k) = col(zi
1(k), . . . , zi

n(k)) ∈ R
n

with initial value zi
i (0) = 1 and zi

j (0) = 0. It can be verified
that K = ∩n

i=1K i .
This rule is motivated by the existing consensus-based

designs to solve special variational inequalities in the name
of partial-decision information network games [14, 19]. To
compensate the graph imbalance, we further introduce an
extra vector zi to rescale the iteration. Similar ideas have been
partially discussed in the Nash equilibrium seeking literature
[17, 20, 21]. By contrast, we consider more general varia-
tional inequalities under time-varying digraphs which may
not be always connected and weight-balanced. These asym-
metric and time-varying features of the interaction graphs
certainlymake the analysis of our algorithmmuchmore chal-
lenging.

Define the transition matrix by Φ(k, s) � W (k −
1) · · · W (s) for any two integers k > s ≥ 0 and let
Φ(k, k) = In for consistence. This matrix is verified to be
row-stochastic for any k ≥ s ≥ 0 under Assumption 3. Here
is a key lemma on its limit behaviors [22].

Lemma 2 Suppose that Assumptions 2–3 hold. Consider the
algorithm (3). Then, for any integer k ≥ 0, there exists
a normalized vector π(k) = col(π1(k), . . . , πn(k)) (i.e.,
1Tn π(k) = 1), such that the following statements hold:

(1) π(k) = W (k)Tπ(k + 1).
(2) There exists a constant γ ≥ η(n−1)ρ , such that πi (k) ≥ γ

for any i ∈ N and k ∈ Z+.
(3) For any i, j ∈ N and k ≥ s ≥ 0, |[Φ(k, s)]i j −π j (s)| ≤

Cλk−s for some constants C > 0 and 0 < λ < 1.
(4) For any i, j ∈ N , when k−s ≥ n�+2�, [Φ(k, s)]i j > ξ

for some constant 0 < ξ < 1.
(5) For any i ∈ N , zi

i (k) > 0 for any k ∈ Z+ and satisfies
that |zi

i (k) − πi (0)| ≤ Cλk .

Before the main results, two more supporting lemmas are
extracted from [23, 24] for the following analysis.

Lemma 3 Consider a nonnegative sequence {γk} and a
scalar 0 < β < 1. Suppose that limk→∞ γk = 0. Then,

limk→∞
∑k

l=0 βk−lγl = 0. In addition, if
∑∞

k=0 γk < ∞,
then

∑∞
k=0

∑k
l=0 βk−lγl < ∞.

Lemma 4 Let {vk}, {uk}, {bk}, and {ck} be nonnegative
sequences, such that

∑∞
k=0 bk < ∞,

∑∞
k=0 ck < ∞, and

vk+1 ≤ (1 + bk)vk − uk + ck, ∀k ≥ 0.

Then, {vk} converges and
∑∞

k=0 uk < ∞.

4 Performance analysis

In this section, we analyze the convergence of algorithm (3)
over time-varying unbalanced digraphs.

For convenience, we take

εi (k) = ΠK i

(

x̂i
(k) − τk

Ri Fi (x̂
i
(k))

zi
i (k)

)

− x̂i
(k)

and rewrite (3) in the following perturbed form:

xi (k + 1) = x̂i
(k) + εi (k),

zi (k + 1) =
n∑

j=1
wi j (k)z j (k),

(4)

where x̂i
(k) and εi (k) are the linear nominal and nonlinear

perturbed terms of (3), respectively.
We first show that each estimate xi (k) converges to the

global constrained set K .

Lemma 5 Let Assumptions 1–3 hold. Then, for any i ∈ N
and k ∈ Z+, we have

Di (k) ≤ (1 − ξ)
� k

n�+2� � Di (0) (5)

with Di (k) � max j∈N dK i (x
j (k)) and �x� the maximum

integer less than x.

Proof We start with the evolution of dK i (x
j (k)). Suppose

that j �= i . By definitions of ΠK i and Ri , we have

dK i (x
j (k)) = ‖x j (k) − ΠK i (x

j (k))‖
= ‖x j (k) − ΠK i (x̂

j
(k − 1) + ε j (k − 1))‖

= ‖x̂ j
(k − 1) − ΠK i (x̂

j
(k − 1))‖.

According to Lemma 1

dK i (x
j (k))

≤
n∑

l=1
w jl(k − 1)‖xl(k − 1) − ΠK i (x

l(k − 1))‖
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=
n∑

l=1
w jl(k − 1) dK i (x

l(k − 1)).

Repeating this iteration and recalling the definition of tran-
sition matrix Φ, we have

dK i (x
j (k)) ≤

n∑

l=1
[Φ(k, s)] jldK i (x

l(s))

for any k ≥ s ≥ 0. Due to the stochasticity of Φ, we obtain
that Di (k) ≤ Di (s) for any k ≥ s ≥ 0. Then, we recall the
fact dK i (x

i (k)) = 0. This together with Lemma 2 implies

Di (k) ≤ Di (� k

n� + 2�
�(n� + 2�))

≤ (1 − ξ)
� k

n�+2� � Di (0).

The proof is thus complete. ��
From K = ∩n

i=1K i and its compactness, all estimates
x1(k), . . . , xn(k) ultimately enter into set K . Thus, they
are uniformly bounded for any k ∈ Z+. Consequently,
there exists a constant L > 0, such that ‖Fi (x(k))‖ ≤
‖F(x(k))‖ ≤ L for each i ∈ N and k ∈ Z+.

Next, we move on to the limit behavior of sequence
{xi (k)}. For this purpose, we let x(k) = ∑n

i=1 πi (k)xi (k)

and denote Γ (x(k), x∗) = (x(k)− x∗)T(F(x(k))− F(x∗))
for short with π(k) given in Lemma 2. According to Lemma
5, thisweighted average x(k) also converges to K as k → ∞,
while Γ (x(k), x∗) ≥ 0 under Assumption 1.

We are ready to present the first main result of this paper.

Theorem 1 Let Assumptions 1–3 hold. Then, there exist three
constants C1, C2, C3 > 0, such that, for any k ∈ Z+, we
have

n∑

i=1
πi (k + 1)‖xi (k + 1) − x∗‖2

≤
n∑

i=1
πi (k)‖xi (k) − x∗‖2 − C1τkΓ (x(k), x∗)

+ C2τ
2
k + C3τk max

i∈N
{‖xi (k) − x(k)‖}. (6)

Proof At first, according to Proposition 1.5.8 in [1], x∗ =
ΠK (x∗ − τ F(x∗)) for any τ > 0. Or equivalently, x∗ =
ΠK i (x

∗ − τ Ri Fi (x∗)), ∀i ∈ N by the definitions of K i

and Ri . This combined with the nonexpansive property of
projection operator implies

‖xi (k + 1) − x∗‖2

≤
∥
∥
∥
∥ΠK i

(

x̂i
(k) − τk

Ri Fi (x̂
i
(k))

zi
i (k)

)

− ΠK i

(

x∗ − τk
Ri Fi (x∗)

zi
i (k)

)∥
∥
∥
∥

2

≤ ‖x̂i
(k) − x∗ − τk Ri

zi
i (k)

[Fi (x̂
i
(k)) − Fi (x∗)]‖2

≤ ‖x̂i
(k) − x∗‖2 + τ 2k

(zi
i (k))2

‖Fi (x̂
i
(k)) − Fi (x∗)‖2

− 2τk

zi
i (k)

(x̂i
(k) − x∗)TRi [Fi (x̂

i
(k)) − Fi (x∗)]. (7)

Note that ‖x̂i
(k)−x∗‖2 ≤ ∑n

j=1 wi j (k)‖x j (k)−x∗‖2 under
Assumption 3. We recall the boundedness of Fi and obtain

‖xi (k + 1) − x∗‖2

≤
n∑

j=1
wi j (k)‖x j (k) − x∗‖2 + 4L2τ 2k

(zi
i (k))2

− 2τk

zi
i (k)

(x̂i
(k) − x∗)TRi [Fi (x̂

i
(k)) − Fi (x∗)].

Multiplying both side of this inequality by πi (k + 1) and
summing them together over i ∈ N imply

n∑

i=1
πi (k + 1)‖xi (k + 1) − x∗‖2

≤
n∑

i=1
πi (k + 1)

n∑

j=1
wi j (k)‖x j (k) − x∗‖2 + 4nL2τ 2k

mini∈N (zi
i (k))2

−
n∑

i=1

2τk

zi
i (k)

πi (k + 1)(x̂i
(k) − x∗)TRi [Fi (x̂

i
(k))

− Fi (x∗)]

≤
n∑

i=1
πi (k)‖xi (k) − x∗‖2 + 4nL2τ 2k

mini∈N (zi
i (k))2

−
n∑

i=1

2τk

zi
i (k)

πi (k + 1)(x̂i
(k) − x∗)TRi [Fi (x̂

i
(k))

− Fi (x∗)]

with the property of π(k) from Lemma 2.
Let us consider the upper bound of the right-hand side of

the above inequality. We split the last term into three parts as
follows:

n∑

i=1

2τk

zi
i (k)

πi (k+1)(x̂i
(k)−x∗)TRi [Fi (x̂

i
(k))−Fi (x∗)]

=
n∑

i=1

2τk

zi
i (k)

πi (k+1)(x(k)−x∗)TRi [Fi (x(k))−Fi (x∗)]
︸ ︷︷ ︸

Δ1

+
n∑

i=1

2τk

zi
i (k)

πi (k+1)(x̂i
(k)−x(k))TRi [Fi (x(k))−Fi (x∗)]

︸ ︷︷ ︸
Δ2

+
n∑

i=1

2τk

zi
i (k)

πi (k+1)(x̂i
(k)−x∗)TRi [Fi (x̂

i
(k))−Fi (x(k))]

︸ ︷︷ ︸
Δ3

.
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By Lemma 2, there exists a constant γ̂ > 0, such that
γ̂ ≤ zi

i (k) ≤ 1 for any k ∈ Z+ and i ∈ N . Since
the sequences generated by (3) are contained in the set
{x | dK (x) ≤ ∑n

i=1 Di (0)} and K is compact, all ‖x̂i
(k)‖,

‖x∗‖, ‖x(k)‖ can be upperly bounded by a large number
Θ > 0. Using Lemma 2, we can bound the first term Δ1

from below as follows:

Δ1 ≥ 2γ τk(x(k) − x∗)T(F(x(k)) − F(x∗)).

Similarly, for the rest two parts, we have

−Δ2 ≤ 4Lτk

γ̂
max
i∈N

{‖xi (k) − x(k)‖},

−Δ3 ≤ 4Θ�τk

γ̂
max
i∈N

{‖xi (k) − x(k)‖}.

We put all inequalities together and obtain

n∑

i=1
πi (k + 1)‖xi (k + 1) − x∗‖2

≤
n∑

i=1
πi (k)‖xi (k) − x∗‖2 − 2γ τkΓ (x(k), x∗)

+ 4nL2τ 2k

γ̂ 2 + 4(L + Θ�)τk

γ̂
max
i∈N

{‖xi (k) − x(k)‖}.

Letting C1 = 2γ , C2 = 4nL2

γ̂ 2 , and C3 = 4(L+Θ�)
γ̂

implies
the expected inequality (6). ��

According to Lemma 5 and Theorem 1, our distributed
algorithm (3) may not converge to the expected solution x∗
without further treatments. Precisely, we can rewrite (6) as
follows:

n∑

i=1
πi (k + 1)‖xi (k + 1) − x∗‖2

≤
n∑

i=1
πi (k)‖xi (k) − x∗‖2 − C1τkΞk

withΞk � Γ (x(k), x∗)− C2
C1

τk − C3
C1

max
i∈N

{‖xi (k) − x(k)‖}.
The following corollary summarizes the convergence error
of x(k) to x∗ upon both the stepsize and consensus error.

Corollary 1 Let Assumptions 1–3 hold. Suppose that
∑∞

k=0 τk

= ∞ and lim supk→∞ τk = τ < ∞. Then, there exists a
constant C4 > 0, such that

0 ≤ lim inf
k→∞ Γ (x(k), x∗)

≤ C4(τ + lim sup
k→∞

max
i∈N

{‖xi (k) − x(k)‖}).

Its proof can be done by seeking a contradiction and is
omitted to save space. With Corollary 1, diminishing step-
sizes are required toward the exact solvability of our problem.

Next, we consider stepsizes {τk} satisfying the following
conditions:

∞∑
k=0

τk = ∞,
∞∑

k=0
τ 2k < ∞. (8)

Here is the second main result of this paper about the
effectiveness of algorithm (4) under these stepsizes.

Theorem 2 Let Assumptions 1–3 hold. Suppose that the step-
sizes satisfy (8). Then, for any i ∈ N , limk→∞ ‖xi (k)

−x(k)‖ = 0 and limk→∞ xi (k) = x∗.

Proof Toprove this theorem,wefirst claim that limk→∞ ‖εi (k)‖ =
0. In fact, according to the definition of εi , it follows that:

‖εi (k)‖ ≤ ‖ΠK i (x̂
i
(k)−τk

Ri Fi (x̂
i
(k))

zi
i (k)

)−ΠK i (x̂
i
(k))‖

+ ‖ΠK i (x̂
i
(k)) − x̂i

(k)‖

≤ τk‖ Ri Fi (x̂
i
(k))

zi
i (k)

‖ +
n∑

l=1
wil(k)dK i (x

l(k))

≤ Lτk

γ̂
+ Di (k), (9)

where we have used the boundedness of F and the definition
of Di (k). From the last inequality, we can recall Lemma 5
and confirm our claim.

By Lemma 2, we obtain

x(k) =
n∑

j=1
π j (k)[x̂ j

(k − 1) + ε j (k − 1)]

=
n∑

j=1
π j (k − 1)x j (k − 1) +

n∑

j=1
π j (k)ε j (k − 1)

= x(k − 1) +
n∑

j=1
π j (k)ε j (k − 1)

= x(0) +
k∑

l=1

n∑

j=1
π j (l)ε j (l − 1).

Meanwhile, we rewrite algorithm (4) in the following form:

xi (k)=
n∑

j=1
[Φ(k, 0)]i j x j (0)+

k∑

l=1

n∑

j=1
[Φ(k, l)]i jε j (l−1).

Since
∑n

j=1 π j (0) = 1,we combine the above two equations
and obtain

xi (k)−x(k) =
n∑

j=1
{[Φ(k, 0)]i j − π j (0)}[x j (0) − x(0)]
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+
k∑

l=1

n∑

j=1
{[Φ(k, l)]i j − π j (l)}ε j (l − 1).

Recalling that |[Φ(k, l)]i j − π j (l)| ≤ Cλk−l under theorem
assumptions by Lemma 5, we further have

‖xi (k)−x(k)‖ ≤Cλk
n∑

j=1
‖x j (0) − x(0)‖

+ nC
k∑

l=1
λk−l max j∈N ‖ε j (l − 1)‖. (10)

Since limk→∞ ‖εi (k)‖ = 0, we recall Lemma 3 and obtain
limk→∞ ‖xi (k) − x(k)‖ = 0. This verifies the first part of
this theorem.

Next, we are going to prove the second part. We multiply
both sides of inequality (10) by τk and substitute the upper
bound (9) into it. This gives

τk‖xi (k) − x(k)‖
≤ τkCλk

n∑

j=1
‖x j (0) − x(0)‖

+ τknC
k∑

l=1
λk−l

[ Lτl−1

γ̂
+ max j∈N D j (l − 1)

]
.

By completing squares, we further have

τk‖xi (k) − x(k)‖
≤ C2

n∑

j=1
‖x j (0) − x(0)‖2τ 2k + λ2k + 2n2C2τ 2k

+
k∑

l=1
λ2(k−l)

[ L2τ 2l−1

γ̂ 2 + max j∈N ‖D j (l − 1)‖2
]
.

Summing up the above inequalities for k ∈ Z+ provides us

∞∑
k=1

τk‖xi (k) − x(k)‖

≤ C2
n∑

j=1
‖x j (0) − x(0)‖2

∞∑
k=1

τ 2k +
∞∑

k=1
λ2k

+ 2n2C2
∞∑

k=1
τ 2k

+
∞∑

k=1

k∑

l=1
λ2(k−l)

[ L2τ 2l−1

γ̂ 2 +max j∈N ‖D j (l−1)‖2
]
.

According to Lemma 5,
∑∞

l=1 maxi∈N ‖Di (l − 1)‖2 < ∞.

This alongwith
∑∞

k=0 τ 2k < ∞ implies
∞∑

k=1

k∑

l=1
λ2(k−l)[ L2τ 2l−1

γ̂ 2

+max j∈N ‖D j (l − 1)‖2] < ∞ by Lemma 3. Consequently

∞∑
k=1

τk‖xi (k) − x(k)‖ < ∞,

∞∑
k=1

τk

n∑

i=1
‖xi (k) − x(k)‖ < ∞.

Note thatmaxi∈N {‖xi (k)−x(k)‖ ≤ ∑n
j=1 ‖xi (k)−x(k)‖}.

Applying Lemma 4 to inequality (6), we have the con-
vergence of

∑n
i=1 πi (k)‖xi (k) − x∗‖2, or equivalently, the

convergence of ‖xi (k) − x∗‖ for any i ∈ N .
Meanwhile, in this case, lim infk→∞ Γ (x(k), x∗) = 0

by Corollary 1. Thus, it has a subsequence {x(kp)}, such
that limp→∞ Γ (x(kp), x∗) = 0. Since x(k) is bounded, this
subsequence again has a convergence subsequence.We abuse
the notation and still denote it by {x(kp)}. By the continuity
of F, Γ (lim p→∞ x(kp), x∗) = 0. According to the strict
monotonicity of F, limp→∞ x(kp) = x∗.

Since ‖xi (k) − x∗‖ ≤ ‖xi (k) − x(k)‖ + ‖x(k) − x∗‖
by the triangle inequality, we take the limit inferiors of both
sides and recall that limk→∞ ‖xi (k) − x(k)‖ = 0. It follows
that:

lim
k→∞ ‖xi (k) − x∗‖ ≤ lim inf

t→∞ ‖x(k) − x∗‖ = 0.

The proof is thus complete. ��
Remark 1 Theorems 1 and 2 establish the basic convergence
performance of (3) under different stepsize conditions. The
algorithm (3) can be regarded as a distributed counterpart
of classical projection rules for these constrained variational
inequalities [1, 2].

5 Comparative discussion

In this section, we provide two examples to illustrate how
the proposed algorithm (3) can solve different distributed
computing problems in a unified fashion.

5.1 Seeking Nash equilibrium in noncooperative
games

We start with the partial-information Nash equilibrium seek-
ing problem, which has been extensively studied in the past
few years.

Following the formulation in [9, 14], we consider an n-
player noncooperative game G = {N , {θ1, . . . , θN }, K1 ×
· · · × Kn}, where θi (xi , x−i ) and Ki ⊂ R

Ni are the cost
function and constrained strategy set of player i , respectively.
Here, xi ∈ R

Ni is player i’s strategy and x−i represents the
other players’ strategies. In the partial-information setting,
each player only knows its own cost function and constrained
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set.Meanwhile, the players are allowed to communicate with
others through a network. The aim of each player is to min-
imize its cost function by selecting permissible strategy as
follows:

min θi (xi , x−i ),

s.t. xi ∈ Ki .
(11)

Suppose that θi (xi , x−i ) is convex and continuously dif-
ferentiable for each fixed x−i . We can resort to Proposition
1.4.2 in [1] and characterize the equilibria of this game as the
solution to the following variational inequalities:

(x − x∗)TF(x∗) ≥ 0, ∀x ∈ K , (12)

where F(x) = col(∇x1θ1(x1, x−1), . . . , ∇xn θn(xn, x−n))

and K = K1 × · · · × Kn .
Since player i knows ∇θi and Ki , this problem can be

solved by our model. In fact, algorithm (3) in this case can
be repeated as follows:

xi (k + 1) = ΠK i

(

x̂i
(k) − τk

Ri∇xi θi (x̂
i
i (k), x̂i

−i (k))

zi
i (k)

)

,

zi (k + 1) =
n∑

j=1
wi j (k)z j (k), (13)

where xi (k), x̂i
(k), K i , zi , and Ri are defined as above.

Here is the corresponding conclusion.

Corollary 2 Suppose that the function θi is strictly convex in
xi for any fixed x−i and its gradient ∇xi θi is l-Lipschitz for
some constant l > 0. Suppose that the stepsizes satisfy (8).
Then, under Assumptions 2 and 3, limk→∞ xi (k) = x∗ for
any i ∈ N with x∗ the Nash equilibrium corresponding to
game G.

Similar algorithms have been developed in the literature
for either fixed or switching interaction graphs [14, 16, 17,
21, 25]. However, most of these results require the interac-
tion graphs be undirected or at least weight-balanced. Here,
we remove this limitation and allow the graphs to be time-
varying and weight-unbalanced.

Remarkably, a very recent work [26] has also developed a
similar rule to solve this Nash equilibrium seeking problem
under the same setting. However, to address the imbalance
issue, the full mapping F is required to be stronglymonotone
while each local cost function θi should be strongly convex.
Here, we only assume some mild strict monotonicity of F
to ensure the convergence of the algorithm, which certainly
includes their results as special cases.

5.2 Solving large-scale linear equations

We further consider the problem to solve large-scale linear
equations by distributed designs.

Consider linear algebraic equations

Ax = b (14)

with A ∈ R
N×N , x ∈ R

N , and b ∈ R
N . Without loss

of generality, we assume that matrix A is positive definite.
Developing effective algorithms to solve this problem is fun-
damental in scientific computing and has been found inmany
areas. Since the number N may be too large to over the
capacity of single computing node, we shall partition these
equations into some small groups and utilize a network of
computing node to solve the problem in a cooperative way.
This problem has been partially studied in many papers, e.g.,
[27–30]. Here, we show how this problem can be solved by
the algorithm (3) under time-varying digraphs.

To be specific, we assume that each node i ∈ N knows
Ni rows of A and also the corresponding portion of b with∑n

i=1 Ni = N . Denote these portions by Ai and bi . Note that
these equations are equivalent to the following unconstrained
variational inequalities:

(x − x∗)T(Ax∗ − b) ≥ 0, ∀x ∈ R
N . (15)

Thus, these variational inequalities can be solved by our
distributed computing model by letting Ki = R

Ni and
Fi (x) = Ai x − bi . The corresponding distributed solver
is thus given as follows:

xi (k + 1) =x̂i
(k) − τk

Ri (Ai x̂
i
(k) − bi )

zi
i (k)

,

zi (k + 1) =
n∑

j=1
wi j (k)z j (k),

(16)

where xi denote agent i’s estimation of the solution x∗.

Corollary 3 Suppose that matrix A is positive definite and
the stepsizes satisfy (8). Then, under Assumptions 2 and 3,
limk→∞ xi (k) = x∗ for any i ∈ N , where x∗ is the unique
solution to linear equations (14).

Different from the primal-dual type distributed solvers in
[29–31], we develop a novel distributed solver from the per-
spective of variational inequalities for these linear equations
over time-varying digraphs. Compared with similar rules in
[28, 32], only a portion of the local estimate at each agent
requires extra update other than local averaging. This defi-
nitely saves many computation resources.
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Fig. 1 The interaction graphs in
our example

6 Simulation

In this section, we solve theRiver Basin Pollution gamemod-
ified from [33] to illustrate the effectiveness of our preceding
algorithm (3).

Suppose that there are six factories located along a river.
Each factory engages in an economic activity that will cause
pollution to the river (e.g., non-ferrous metal smelting). Two
monitoring stations are located along the river to monitor
the pollutant concentration levels. Besides, the government
gives subsidies (or applies Pigouvian taxes) to these facto-
ries based on the overall pollutant concentration level. Each
factory wants to minimize its overall function.

To be specific, the revenue and expenditure of player j
are R j (x) = [d1 − d2(

∑6
i=1 xi )]x j and Fj (x) = (c1 j +

c2 j x j )x j with constantsd1, d2, c1 j , and c2 j . Here, economic
constants d1 and d2 determine the inverse demand law, while
c1 j and c2 j are player j’s private information. Moreover,
the pollution concentration measured at the lth monitoring
station is ql(x) = ∑6

j=1 u jle j x j with parameters u jl , e j >

0. The subsidies are given according to Tl(x) = λl(ql(x) −
Kl) with Kl the government’s maximum tolerance level of
pollutant concentration and λl > 0 some penalty coefficient.
Thus, the overall cost of each player j can be put down as
φ j (x) = Fj (x)+∑2

l=1 Tl(x)−R j (x).Moreover,we assume
that player j takes its economic activity level x j within some
strategy setΩ j . In thisway, the players play a noncooperative
game.

Since the local cost functions contain private information
of each factory, centralized algorithms requiring all these
sensitive data in [33] are prohibitive in this case. Thus,
we provide distributed design which relies on local com-
putation and neighboring information to solve the problem.
Let φ(x) = col(φ1(x), . . . , φ6(x)). We can formulate the
problem as some variational inequalities of the form (12)
with K = Ω1 × · · · × Ω6. Suppose that these players can
share information with other agents through a time-varying
interaction graph except their private parameters in cost
functions. Here, the interaction graph is time-varying and
weight-unbalanced. Thus, existing Nash equilibrium seek-
ing rules might fail to solve the problem. Meanwhile, we can
resort to the arguments in Sect. 5 and confirm its solvability
by algorithm (3) in a distributed way.

Table 1 Parameters in our game

Player j c1 j c2 j e j u j1 u j2

1 0.1 0.01 0.5 6.5 4.5

2 0.2 0.05 0.25 5 6.25

3 0.15 0.01 0.55 5.5 3.75

4 0.25 0.05 0.5 4.5 5

5 0.2 0.02 0.25 4 5.5

6 0.1 0.03 0.25 5 6

For simulations, the interactions among these players are
determined by digraphs in Fig. 1. Here, the interaction graph
switches according to G(k) = G1+mod(�k/3�, 3). Moreover,
the nonzero elements in the corresponding weight matrix
are given by wi j = 1

|Ni | for i ∈ N with |Ni | the cardinal-
ity of node i’s neighboring set Ni . We set d1 = 3, d2 =
0.01, and K1 = K2 = 100. Other parameters are given in
Table 1. The strategy set Ω j for player j is [0, X j ] with
X j randomly chosen in [30, 40] for all j = 1, . . . , 6. The
Nash equilibrium to this game can be numerically derived as
x∗ ≈ col(13.22, 10.03, 15.68, 4.29, 24.68, 17.45). We set
τk = 2/(k0.6 + 10). The simulation results are provided in
Figs. 2 and 3. Figure 2 shows the profiles of each player’s esti-
mate about its corresponding expected strategy, while Fig. 3
illustrates the evolution of the relative convergence errors of
the form ‖xi (k) − x∗‖/‖x∗‖ at each player i . One can find
that all estimates of these players quickly converge to the
expected Nash equilibrium. These observations confirm the
effectiveness of algorithm (3) in solving problem (1) over
time-varying unbalanced digraphs.

7 Conclusion

In this paper, we studied a distributed model to solve the
variational inequality problem when each agent only knows
a part of the full mapping and also a subset of the whole
decision variables. A consensus-based projection algorithm
was developed for each agent and shown to be effec-
tive in solving the problem over time-varying unbalanced
directed graphs. Future work may include how to design
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Fig. 2 Activity levels of all factories

Fig. 3 Relative error between xi and x∗

communication-efficient algorithms for general mappings
without the monotonicity condition.
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