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Nash Equilibrium Seeking for High-Order
Multiagent Systems With Unknown Dynamics

Yutao Tang , Member, IEEE, and Peng Yi

Abstract—In this article, we consider a Nash equilibrium
seeking problem for a class of high-order multiagent sys-
tems with unknown dynamics. Different from existing re-
sults for single integrators, we aim to steer the outputs of
this class of uncertain high-order agents to the Nash equi-
librium of some noncooperative game in a distributed man-
ner. To overcome the difficulties brought by the high-order
structure, unknown nonlinearities, and the regulation re-
quirement, we first introduce a virtual player for each agent
and solve an auxiliary noncooperative game for them. Then,
we develop a distributed adaptive protocol by embedding
this auxiliary game dynamics into some proper tracking
controller for the original agent to resolve this problem.
We also discuss the parameter convergence issue under
certain persistence of excitation conditions. The efficacy of
our algorithms is verified by numerical examples.

Index Terms—Adaptive control, embedded design, Nash
equilibrium, unknown dynamics.

I. INTRODUCTION

NASH equilibrium computation is one of the most funda-
mental problems in noncooperative game theory and has

been studied for many years [1]. With the wide applications of
multirobot networks and Big Data technologies, considerable
efforts have been made in designing noncooperative games for
the engineering multiagent systems to ensure that the final Nash
equilibrium is desirable to meet some system-level constraints
and objectives [2], [3], [4], [5]. In these multiagent games,
each player/agent only has access to its own and neighboring
information for some local computation. Thus, how to develop
distributed rules to seek or learn a Nash equilibrium has become
a hot topic over the past few years. Many important results have
been obtained under various circumstances, see [6], [7], [8], [9],
[10], [11], [12], [13] and references therein.
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In most continuous-time Nash equilibrium seeking results,
the players are often assumed to be single integrators from
the perspective of computation. However, in many practical
applications, the decision process for each player might have
nontrivial internal dynamics and be subject to various certainties
or disturbances. These issues from the agent dynamics will
inevitably affect and even deteriorate the performance of existing
Nash equilibrium seeking algorithms specially designed for
single integrators. Thus, it is crucial for us to take the possible
uncertain high-order agent dynamics into consideration to com-
plete the Nash equilibrium seeking tasks. Although efforts have
been made by some authors for full-information circumstances,
e.g., [14], [15], [16], [17], there are very few works on the
solvability of distributed Nash equilibrium seeking problem
under the partial information scenario for high-order multiagent
systems.

Recently, some interesting attempts have been made along this
line for nonsingle-integrator multiagent systems to distributedly
reach a steady-state related to Nash equilibria of some non-
cooperative games [18], [19], [20], [21], [22], [23]. Different
from the classical works under the name of the differential
game [1], the cost of each agent in these works is described
by a function depending upon the agents’ current outputs rather
than a functional involving some integral-type running cost. This
has been greatly motivated by the wide applications of engi-
neering multiagent system implementing designed distributed
algorithms to complete many challenging tasks, e.g., formation
control and area coverage [2], [24].

Several special classes of high-order multiagent systems
have been discussed in the aforementioned works. In [18], the
gradient-play rules were extended to solve the Nash equilibrium
seeking problem for (multiple) integrators with disturbance
rejection. In [19], Bianchi and Grammatico considered a gen-
eralized Nash equilibrium seeking problem with coupling con-
straints and solved it for double-integrator multiagent systems.
Bounded controls were further developed in [20] to overcome
the input saturation of single or double-integrator agents. In a
very recent work [21], the agent dynamics are even allowed
to be general linear systems subject to small model uncertain-
ties and external disturbances via some internal model-based
designs when the cost functions are quadratic. With regard to
special types of aggregative games, more general agent dynam-
ics have also been explored. For example, passive nonlinear
second-order agents were considered in [25] by a proportional
integral feedback algorithm to reach the expected Cournot–Nash
equilibrium. Without assuming the exact knowledge of agent
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dynamics, Deng and Liang [22] and Zhang et al. [23] further
took parameter uncertainties into consideration and developed
effective distributed rules to drive the outputs of agents in the
Euler–Lagrange form and output feedback form with unity rel-
ative degree to reach the Nash equilibrium of some aggregative
games.

In this work, we consider a noncooperative game played by a
class of nonlinear high-order multiagent systems with unknown
dynamics. More specifically, we focus on the case when the
unknown time-varying dynamics can be linearly parameterized.
As discussed in [18], [19], [21], [22], and [23], we aim to drive
the steady-state output of this high-order nonlinear multiagent
system to reach a Nash equilibrium specified by the given non-
cooperative game irrespective of the uncertainties in the agent
dynamics. The contribution of this article is at least twofold. On
the one hand, we solve a Nash equilibrium seeking problem for
a class of high-order nonlinear multiagent systems subject to
unknown dynamics. When such unknown dynamics vanishes,
the agent dynamics can include both single and multiple in-
tegrators as special cases. Thus, this work can be taken as an
adaptive high-order extension of the results obtained in [9], [11],
and [18]. On the other hand, we explore the possibility of an
embedded control approach to solve such a Nash equilibrium
seeking problem for high-order multiagent systems. Although
initiated for distributed optimization in [26], this embedded
design is proven to be able to substantially reduce the design
complexities and facilitate us to solve the Nash equilibrium
seeking problem for high-order agents in a modular way. The
rest of this article is organized as follows. Some preliminaries
are provided in Section II. Problem formulation is presented
in Section III. Then, the main results are given in Section IV
along with both solvability analysis and parameter convergence.
Following that, several examples are provided to illustrate the
effectiveness of our algorithms in Section V. Finally, Section VI
concludes this article.

II. PRELIMINARY

In this section, we present some preliminaries of our no-
tations and graph theory for the following analysis. We use
standard notations. Let RN be the N -dimensional Euclidean
space and RN1×N2 be the set of all N1 ×N2 matrices. 1N

(or 0N ) denotes an N -dimensional all-one (or all-zero) column
vector and 1N1×N2

(or 0N1×N2
) all-one (or all-zero) matrix.

diag{b1, . . ., bN} denotes an N ×N diagonal matrix with di-
agonal elements bi with i = 1, . . ., N . blockdiag(A1, . . . , AN )
denotes a block diagonal matrix with diagonal elements Ai with
i = 1, . . . , N . col(a1, . . ., aN ) = [aᵀ1 , . . ., a

ᵀ
N ]ᵀ for column

vectors ai with i = 1, . . ., N . For a vector x and a matrix A,
||x|| denotes the Euclidean norm and ||A|| the spectral norm.
Let M1 = 1√

N
1N and M2 ∈ RN×(N−1) be the matrix satis-

fying Mᵀ
2 M1 = 0N−1, Mᵀ

2 M2 = IN−1 and M2M
ᵀ
2 = IN −

M1M
ᵀ
1 . We may omit the subscript when it is self-evident. A

vector-valued function Φ : Rm → Rm is said to be ω-strongly
monotone, if for any ζ1, ζ2 ∈ Rm, we have (ζ1 − ζ2)

ᵀ[Φ(ζ1)−
Φ(ζ2)] ≥ ω‖ζ1 − ζ2‖2. Function Φ : Rm → Rm is said to be

ϑ-Lipschitz, if for any ζ1, ζ2 ∈ Rm, it holds that ‖Φ(ζ1)−
Φ(ζ2)‖ ≤ ϑ‖ζ1 − ζ2‖.

A weighted directed graph (or digraph) � = (�,�,�) is
defined as follows, where � = {1, . . ., N} is the set of nodes,
� ⊂ �×� is the set of edges, and� ∈ RN×N is a weighted
adjacency matrix. (i, j) ∈ � denotes an edge leaving from node i
and entering node j. The weighted adjacency matrix is described
by� = [aij ] ∈ RN×N , where aii = 0 and aij ≥ 0 (aij > 0 if
and only if there is an edge from agent j to agent i). A path in
graph � is an alternating sequence i1e1i2e2· · ·ek−1ik of nodes
il and edges em = (im, im+1) ∈ � for l = 1, 2, . . ., k. The
neighbor set of agent i is defined as �i = {j : (j, i) ∈ �} for
i ∈ �. If there is a directed path between any two nodes, then
the digraph is said to be strongly connected.

The in-degree and out-degree of node i are defined by
din
i =

∑N
j=1 aij and dout

i =
∑N

j=1 aji. A digraph is weight-
balanced if din

i = dout
i holds for any i = 1, . . . , N . The Lapla-

cian matrix of � is defined as L � Din −� with Din =
diag(din

1 , . . . , d
in
N ). Note thatL1N = 0N for any digraph. When

it is weight-balanced, we have 1ᵀ
NL = 0ᵀ

N and the matrix
Sym(L) � L+Lᵀ

2 is positive semidefinite. Then, we can or-
der the eigenvalues of Sym(L) as 0 = λ1 < λ2 ≤ · · · ≤ λN .
A weight-balanced digraph is strongly connected if and only
if λ2 > 0. In this case, we have λ2IN−1 ≤ Mᵀ

2 Sym(L)M2 ≤
λNIN .

III. PROBLEM FORMULATION

Consider a collection of heterogeneous high-order nonlinear
systems described by

ẋj,i = xj+1,i

ẋni,i = Δi(xi, t) + ui

yi = x1,i, i = 1, . . . , N, j = 1, . . . , ni − 1

(1)

where xj,i ∈ R is the jth state variable of agent i,
xi � col(x1,i, . . . , xni,i) ∈ Rni , yi ∈ R and ui ∈ R are, re-
spectively, the state, output, and input of agent i. Here, the term
Δi(xi, t) represents the unknown time-varying nonlinearity,
which might result from modeling errors or external perturba-
tions.

Suppose these agents play an N -player noncooperative game
defined as follows. Agent i is endowed with a continuously
differentiable cost function Ji(yi, y−i), where yi ∈ R denotes
the output strategy profile of agent i specified by (1) and
y−i ∈ RN−1 denote the output strategy profile of this multiagent
system except for agent i. Each agent can change its output
strategy profile according to (1) by specifying different actions
(i.e., the control inputs). In this game, all agents seek to asymp-
totically minimize its own cost function Ji by reaching some
proper steady-state output strategy. The equilibrium point of this
game is defined as in [1] and [11].

Definition 1: Consider the game G = {�, Ji, R}. A strategy
profile y∗ = col(y∗1, . . . , y

∗
N ) is said to be a Nash equilibrium

of G if Ji(y∗i , y
∗
−i) ≤ Ji(yi, y

∗
−i) for any i ∈ � and yi ∈ R.

At a Nash equilibrium of the game G, all agents tend to
keep at this state since no player can unilaterally decrease
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its cost by changing the steady-state output strategy on its
own. Denote ∇iJi(yi, y−i) � ∂

∂yi
Ji(yi, y−i) ∈ R and F (y) �

col(∇1J1(y1, y−1), . . . ,∇NJN (yN , y−N )) ∈ RN . Here, F is
called the pseudogradient associated with J1, . . . , JN .

The following assumption is often made in Nash equilibrium
seeking literature [11], [12], [22].

Assumption 1: For any i ∈ �, function Ji(yi, y−i) is con-
tinuously differentiable, and the associated pseudogradient F is
l-strongly monotone and l-Lipschitz for some constants l, l > 0.

Under this assumption, this noncooperative game G admits
a unique Nash equilibrium y∗ characterized by the equation
F (y∗) = 0 according to [27], Propositions 1.4.2 and 2.2.7]. To
seek this Nash equilibrium y∗, it is equivalent for us to drive
all agents to some steady-state with output profile y∗. We are
interested in distributed designs where each agent can share
information with a subset of the overall agents. For this purpose,
a digraph � = (�, �, �) is used to describe the information
flow among these agents. An edge (i, j) in digraph�means that
agent j can the information of agent j. Here is a widely-used
assumption in multiagent papers [9], [11], [28].

Assumption 2: Digraph � is weight-balanced and strongly
connected.

We restrict in distributed controllers of the following form:

ui = ksi(∇Ji, xi, z
s
j)

żsi = gsi (∇Ji, xi, z
s
j), j ∈ Ni ∪ {i}

(2)

with zsi the local compensator state and functions ksi , g
s
i to be

specified later. It can be found that the information of ∇Ji and
agent state xi are private to each agent i in the gradient-play
protocol and the agents can share information by communicating
the local compensator states.

With these preparations, the distributed Nash equilibrium
seeking problem in this article is formulated as follows.

Problem 1: For given multiagent system (1), digraph �, and
function Ji, determine a distributed protocol ui of the form (2)
for agent i such that

1) all trajectories of the closed-loop system are bounded
over the time interval [0, +∞);

2) the outputs of agents satisfy limt→+∞ ||yi(t)− y∗i || = 0
for any i ∈ �with y∗ = col(y∗1, . . . , y

∗
N ) being the Nash

equilibrium of game G.
Remark 1: The formulated problem has been studied by many

authors when the agent dynamics are restricted to single and/or
multiple integrators. In contrast with existing works [9], [11],
[18], [20], the considered agents in this article are allowed to
be high-order and heterogeneous subject to unknown dynamics.
These features make our problem much more challenging than
the Nash equilibrium seeking works for integrators.

To ensure the solvability of this problem, we make an extra
assumption on the unknown time-varying nonlinearity.

Assumption 3: For each i ∈ �, there exists a known ba-
sis function vector pi(xi, t) such that Δi(xi, t) � θᵀi pi(xi, t)
for an uncertain parameter vector θi = col(θ1,i, . . . , θnθi

,i) ∈
Rnθi . Moreover, the basis function vector pi(xi, t) can be
uniformly bounded by smooth functions of xi.

Remark 2: This assumption is known as a linearly param-
eterized condition and has been intensively used in the litera-
ture [29], [30]. Equation (1) under Assumption 3 can represent
a plenty of practical systems and is general enough to cover
Van der Pol oscillators, Duffing equations and many mechanical
systems [31]. Whennθi = 0, the unknown nonlinearity vanishes
and this class of agent dynamics include both single and multiple
integrators as special cases.

As mentioned above, this problem has been partially inves-
tigated in the literature. However, due to the difficulty brought
by the couplings among the high-order structure, information
constraints, and the global equilibrium regulation requirement,
these works are mostly derived for either integrator-type multia-
gent systems or undirected graphs case by case. Inspired by the
embedded control scheme developed in [26] and [32] to solve
distributed optimization problems, we borrow this decoupling
idea to reduce these design complexities and extend it to solve
the formulated Nash equilibrium seeking problem for high-order
multiagent systems (1) in the following section.

IV. MAIN RESULT

In this section, we will detail the main design for solving
Problem 1 by novel adaptive controllers along with a real-time
gradient extension and parameter convergence analysis.

A. Embedded Design and Problem Conversion

Motivated by the designs in [26] and [32], we first consider
some virtual multiagent system

żi = μi, i ∈ �. (3)

Suppose each virtual agent i plays the same noncooperative
game as in Problem 1 with inputμi and output strategy profile zi.
Here, each virtual player can be understood as an abstraction of
the original agent (1) as discussed in [33] and [34]. By definition,
the virtual game has the same Nash equilibrium y∗ with our
problem (1). If the virtual noncooperative game is solved, we
only have to drive agent (1) to track zi to reach the expected Nash
equilibrium point. Since we work with digraphs, the Laplacian
matrix L can be asymmetric. Existing algorithms derived for
undirected graphs might fail to reproduce the expected Nash
equilibrium [9], [11], [12], [13]. For this purpose, we provide a
modified gradient-play rule for the virtual agent i

żi = −α
N∑
j=1

aij

(
zi − zji

)
−∇iJi

(
zi
)

żik = −α
N∑

k=1

aij

(
zik − zjk

)
, k ∈ �\{i}

(4)

where zi = col(zi1, . . . , z
i
N ) represents agent i’s estimate of

all virtual agents’ strategies with zii = zi and the constant
α > 0 is a proportional gain to be specified later. The function
∇iJi(z

i) = ∂Ji

∂zi
i
(zi) is the partial gradient of Ji evaluated at

the local estimate zi. When α = 1, system (5) reduces to the
consensus-based gradient-play dynamics in [11]. Here, we add
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an adjustable parameter α to increase the gain of the consensus
term to ensure its efficiency for weight-balanced digraphs.

For convenience, we define a vector-valued function
F (z) = col(∇1J1(z

1), . . . , ∇NJN (zN )) ∈ RN . It is the ex-
tended pseudogradient of the cost functions J1, . . . , JN . The
following assumption has been widely used in the literature [11],
[12].

Assumption 4: Function F is lF -Lipschitz with lF > 0.
Putting (4) into a compact form gives

ż = −αLz−RF (z) (5)

with z = col(z1, . . . , zN ), R = diag(R1, . . . , RN ),
Ri = col(0i−1, 1, 0N−i), and L = L⊗ IN . Denote
l = max{l, lF }. With α being large enough, the effectiveness
of algorithm (5) has been established in [35]. Here, we provide
a sketch of proof for completeness.

Lemma 1: Suppose Assumptions 1–4 hold. Let

α >
1

λ2

(
l2

l
+ l

)
(6)

Then, for any i ∈ �, along the trajectory of system (5), zi(t)
exponentially converges to y∗ as t goes to +∞.

Proof: First, we can show that at the equilibrium of (5), zi
indeed reaches the Nash equilibrium of game G. In fact, letting
the righthand side of (4) be zero and premultiplying both sides
by 1ᵀ

N ⊗ IN , we have

0 = α (1ᵀ
N ⊗ IN ) (L⊗ IN )z∗ + (1ᵀ

N ⊗ IN )RF (z∗) .

By the fact 1ᵀ
NL = 0 under Assumption 2 and the notations

of R and F , we further have F (z∗) = 0 and Lz∗ = 0. Hence,
there must be some θ ∈ RN such that z∗ = 1⊗ θ and F (1⊗
θ) = 0, or equivalently, F (θ) = 0. That is, θ is the unique Nash
equilibrium y∗ of G and z∗ = 1⊗y∗.

Next, we show the exponential stability of (5) at its equilib-
rium z∗ = 1⊗y∗. We denote z̃ = z− z∗ and perform the coordi-
nate transformation z1 = (Mᵀ

1 ⊗ IN )z̃ and z2 = (Mᵀ
2 ⊗ IN )z̃

with M1 and M2 defined in Section II. It follows then

ż1 = − (Mᵀ
1 ⊗IN )RΔ

ż2 = −α[(Mᵀ
2 LM2)⊗IN ]z2 − (Mᵀ

2 ⊗ IN )RΔ

where Δ � F (z)− F (z∗).
Let V0(z1, z2) =

1
2 (||z1||2 + ||z2||2). Its time derivative

along the trajectory of system (5) satisfies that

V̇0 = −zᵀ1 (M
ᵀ
1 ⊗ IN )RΔ− zᵀ2 (M

ᵀ
2 ⊗ IN )RΔ

− αzᵀ2{[Mᵀ
2 LM2]⊗ IN}z2

≤ −αλ2||z2||2 − z̃ᵀRΔ. (7)

Jointly using the facts F (1N ⊗ y) = F (y) for any y ∈ RN ,

(1ᵀ ⊗ IN )R = IN , and z̃ᵀ1R =
zᵀ
1√
N

, we can bound the cross
term by Young’s inequality and have that

−z̃ᵀRΔ ≤ 2 l√
N

||z1||||z2||+ l||z2||2 − l

N
||z1||2. (8)

Bringing inequalities (7) and (8) together gives

V̇0 ≤ − l

N
||z1||2 − (αλ2 − l)||z2||2 + 2 l√

N
||z1||||z2||

= −
[
||z1|| ||z2||

]
Aα

[
||z1||
||z2||

]
(9)

withAα =

[
l
N − l√

N

− l√
N

αλ2 − l

]
. Under the choice (6), matrixAα

is verified to be positive definite. It follows then

V̇0 ≤ −νV0

with ν the minimal eigenvalue ofAα. Using [31], Th. 4.10], one
can conclude the exponential convergence of z(t) to z∗, which
implies that zi(t) is bounded over [0, +∞) and converges to z∗

as t → +∞. �
Remark 3: The criterion (6) to choose α clearly presents a

natural tradeoff between the control efforts and graph algebraic
connectivity. This observation is consistent with the results
in [11] when α is fixed as one. By choosing a large enough
α, this lemma provides an alternative way to remove the restric-
tive graph coupling condition other than singular perturbation
analysis in [11].

Remark 4: In our design, we use some information of the
communication graph and agents’ cost functions as in [11], [12],
and [22] to ensure the exponential convergence of virtual agent’s
state toward the Nash equilibrium y∗ under weight-balanced
digraphs. In practice, we may compute these values beforehand
by existing algorithms (e.g., [36]) or select α from numerical
simulations by repeatedly increasing it.

Next, we are left to solve the output tracking problem for
agent (1) with reference zi(t) generated by (4). Compared with
classical tracking control settings [29], [31], we will not use the
derivative of zi(t) and leave it as a chosen input.

Due to the presence of uncertain parameter θi, direct cancella-
tion cannot be used to handle the nonlinearities in (1). To tackle
this issue, we adopt a certainty-equivalence design and propose
the following tracking controller for each agent:

ui = −θ̂ᵀi pi(xi, t) +
1

εni

⎡
⎣k1i(x1,i − zi) +

ni∑
j=2

εj−1kjixj, i

⎤
⎦

˙̂
θi = φi(xi, θ̂i, zi, t) (10)

where θ̂i is the estimation of θi with constants ε, k1i, . . . , knii >
0 and smooth function φi(·) to be specified later. Then, the final
controller to solve Problem 1 is composed of (4) and (10), which
is exactly of the form (2). We sketch the structure of the whole
closed-loop system with (4) and (10) in Fig. 1.

Under the above control law, we have

ẋ1, i = x2,i

...

ẋni,i = (θᵀi − θ̂ᵀi )pi(xi, t) +
1

εni

[
k1i(x1,i − zi)
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Fig. 1. Block diagram of closed-loop system with (4) and (10).

+

ni∑
j=2

εj−1kjixj, i

]

˙̂
θi = φi(xi, θ̂i, zi, t)

żi = −α
N∑
j=1

aij(zi − zji )−∇iJi(z
i)

żik = −α
N∑

k=1

aij(z
i
k − zjk), k ∈ �\{i}. (11)

Letting x̂i = col(x1,i − zi, εx2,i, . . . , ε
ni−1xni,i), agent (1)

under the controller (4) and (10) can be rewritten as follows:

ε ˙̂xi = Aix̂i − εb1iżi + εnib2i(θ
ᵀ
i − θ̂ᵀi )pi(xi, t)

˙̂
θi = φi(xi, θ̂i, zi, t)

żi = −α

N∑
j=1

aij(zi − zji )−∇iJi(z
i)

żik = −α

N∑
k=1

aij(z
i
k − zjk), k ∈ �\{i} (12)

where Ai =

[
0 Inxi

−1

k1i [k2i . . . kni i]

]
, b1i = col(1, 0), and

b2i = col(0, 1).
We first choose constants k1i, . . . , kni i such that the polyno-

mial sni − kni is
ni−1 − · · · − k2is− k1i is Hurwitz for any 1 ≤

i ≤ N . Then, the Lyapunov equation Aᵀ
i Pi + PiAi = −2Ini

has a unique positive definite solution Pi with compatible di-
mensions for any i ∈ �. Based on the above observations, we
only need to determine some proper function φi(·) such that
all trajectories of (12) is bounded over [0, +∞) and satisfying
x̂i(t) → 0 as t goes to infinity.

B. Solvability Analysis

Denote x̂ = col(x̂1, . . . , x̂N ), θ = col(θ1, . . . , θN ),
θ̂ = col(θ̂1, . . . , θ̂N ), θ = θ − θ̂, and z = col(z1, . . . , zN ) for
short. The whole composite multiagent system can be put into

a compact form as follows:

˙̂x =
1

ε
Ax̂−B1ż + EB2p

ᵀ(x, t)θ

θ̇ = φ(x, θ̂, z, t)

ż = −αLz−RF (z) (13)

where

A � blockdiag(A1, . . . , AN )

B1 � blockdiag(b11, . . . , b1N )

B2 � blockdiag(b21, . . . , b2N )

E � blockdiag
(
εn1−1In1

, . . . , εnN−1InN

)
φ(x, θ̂, z, t) � col

(
φ1(x1, θ̂1, z1, t), . . . ,

φN

(
xN , θ̂N , zN , t

))
p(x, t) � blockdiag(p1(x1, t), . . . , pN (xN , t)).

Here is the first main theorem of this article.
Theorem 1: Suppose Assumptions 1–4 hold. Choose con-

stants k1i, . . . , kni i such that the polynomial sni − kni i

sni−1 − · · · − k2is− k1i is Hurwitz for each i ∈ � and let
α > 1

λ2
( l

2

l + l). Then, Problem 1 for multiagent system (1) is
solved by a distributed controller composed of (4) and (10) with
φi(xi, θ̂i, zi, t) = pi(xi, t)b

ᵀ
2iPix̂i for any ε > 0.

Proof: Under the theorem conditions, we can recall Lemma
1 and conclude the exponential convergence of zi(t) toward y∗i .
Then, it is sufficient for us to prove x̂i(t) → 0 as t → +∞ to
ensure that limt→+∞[yi(t)− zi(t)] = 0. To this end, we present
a Lyapunov analysis for system (13).

Let us consider the first two subsystems of (13). Let
V̂i = Ŵi + εni−1θ

ᵀ
i θi with Ŵi = x̂ᵀ

i Pix̂i. Its time derivative
along the trajectory of the composite system (13) satisfies

˙̂
Vi = 2x̂ᵀ

i Pi

[
1

ε
Aix̂i − b1iżi + εni−1b2iθ

ᵀ
i pi(xi, t)

]

− 2εni−1θ
ᵀ
i φi

(
xi, θ̂i, zi, t

)

= − 2

ε
x̂ᵀ
i x̂i − 2x̂ᵀ

i Pib1iżi.

By Young’s inequality, it holds that

˙̂
Vi ≤ − 2

ε
x̂ᵀ
i x̂i +

1

ε
||x̂i||2 + ε||Pib1i||2||żi||2

≤ − 1

ε
||x̂i||2 + c1||żi||2

where c1 = maxi∈� ε||Pib1i||2.
At the same time, we can determine a quadratic Lyapunov

function V0(z) according to Lemma 1 or its proof such that

V̇0(t) ≤ −νV0

for some constant ν > 0 with z = z− 1⊗ y∗. Under Assump-
tion 4, the righthand side of system (5) is globally Lipschitz.
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Thus, there exists a constant c2 > 0 such that ||żi||2 ≤ ||ż||2 ≤
c2V0(z) along the trajectory of system (5).

Next, we choose a Lyapunov function for the whole composite
system (13) perhaps after some coordinate transformation of z
to z as V̂ =

∑N
i=1 V̂i + c3V0 with c3 > 0 to be specified later.

It is positive definite and radially unbounded. Combining the
above inequalities, one has

˙̂
V ≤ −

N∑
i=1

1

ε
||x̂i||2 + c1

N∑
i=1

||żi||2 − c3νV0

≤ − 1

ε
||x̂||2 + c1||ż||2 − c3νV0

≤ − 1

ε
||x̂||2 − (c3ν − c1c2)V0.

Letting c3 > c1c2+1
ν gives

˙̂
V ≤ − 1

ε
||x̂||2 − V0 � Ŵ (x̂, z). (14)

Recalling [29], Th. 2.1], we have that all trajectories of
the closed-loop system (13) are bounded over the time inter-
val [0, +∞) and satisfy that limt→∞ ||x̂i(t)|| = 0. As immedi-
ate results, one can conclude the boundedness of xj,i(t) and
θ(t). Moreover, we can obtain that limt→∞ x̂1,i(t) = 0, that
is, limt→∞[yi(t)− zi(t)] = 0. Using the triangle inequality, we
have |yi(t)− y∗i | ≤ |yi(t)− zi(t)|+ |zi(t)− y∗i | → 0 as t →
+∞. �

Remark 5: Note that the considered agent (1) is high-order
and subject to unknown dynamics, which includes both single
and multiple integrators as its special cases. Thus, the theorem
can be taken as an adaptive extension to existing results when the
agent dynamics are exactly known [11], [18]. Moreover, many
typical actuating disturbances can be represented by the form
(1) including the case when the disturbance is generated by a
known autonomous linear dynamics as in [18] and [37]. Thus,
we provide an alternative way to reject external disturbances
other than the observer-based approach used in [18] and the
internal model-based design in [21] and [23].

Remark 6: In the developed controller (10), we may choose
φi(xi, θ̂i, zi, t) = Λipi(xi, t)b

ᵀ
2iPix̂i with Λi a chosen posi-

tive definite matrix. This matrix Λi is called the adaption gain
in the literature [38]. It can be used to achieve a fast adaption
and then improve the transient performance of the controller to
solve our Nash equilibrium seeking problem.

C. Real-Time Gradient Extension

In the preceding section, we implicitly assume the partial
gradient function∇iJi can be evaluated at any given estimate zi.
This is the case when the analytic form of the local cost function
is known by agent i. However, in many circumstances, we may
not have this knowledge and such partial gradient information
can only be accessed or approximated when the real-time output
strategy yi is taken [2]. In this case, the generator (4) fails to be
implemented.

Let us replace ∇iJi(z
i) by ∇iJi(yi, z

i
−i) and obtain

żi = −α

N∑
j=1

aij

(
zi − zji

)
−∇iJi

(
yi, z

i
−i

)

żik = −α

N∑
k=1

aij

(
zik − zjk

)
, k ∈ � \{i}. (15)

Although this dynamics is similar with (4), it cannot generate
the expected Nash equilibrium by itself. In fact, denoting Δ1

i �
∇iJi(z

i)−∇iJi(yi, z
i
−i) gives

żi = −α

N∑
j=1

aij

(
zi − zji

)
−∇iJi(zi)−Δ1

i

żik = −α

N∑
k=1

aij

(
zik − zjk

)
, k ∈ � \{i}.

Compared with the optimal signal generator (4), the error term
Δ1

i always exists except the case when x1, i = zi. Thus, there
must be a discrepancy between zi and z∗ when Δ1

i �= 0.
Putting (16) into a compact form, we have

ż = −αLz−RF (z) +RΔ1 (16)

where Δ1 = col(Δ1
1, . . . , Δ

1
N ). Note that system (16) is expo-

nentially stable when Δ1 ≡ 0 by Lemma 1. At the same time,
one can verify that Δ1

i is l-Lipschitz with respect to the tracking
error x1, i − zi (or x̃i) for each i ∈ � by Assumption 4. These
facts inspire us to develop fast-tracking controllers for each agent
to compensate the estimate error zi − z∗ and complete the whole
design by decreasing the parameter ε.

To this end, we use the same tracking controller for each
agent as in the previous subsection. Jointly with the modified
generator (15), the overall controller to solve our problem using
only real-time gradients is presented as follows:

ui = −θ̂ᵀi pi(xi, t) +
1

εni

⎡
⎣k1i(x1,i − zi) +

ni∑
j=2

εj−1kjixj, i

⎤
⎦

˙̂
θi = φi

(
xi, θ̂i, zi, t

)

żi = −α

N∑
j=1

aij

(
zi − zji

)
−∇iJi

(
yi, z

i
−i

)

żik = −α

N∑
k=1

aij

(
zik − zjk

)
, k ∈ � \{i} (17)

with ε > 0 to be specified later. The structure of the whole
closed-loop system under this controller is shown in Fig. 2.

Here is a theorem to ensure the effectiveness of this controller
to solve our problem.

Theorem 2: Suppose Assumptions 1–4 hold. Choose α, k1i,
. . . knii, and φi as in Theorem 1 for each i ∈ �. Then, there
exists a constant ε∗ > 0 such that the Nash equilibrium seeking
problem for multiagent system (1) is solved by distributed
controllers of the form (17) for any ε ∈ (0, ε∗).
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Fig. 2. Block diagram of closed-loop system with (15) and (10).

Proof: Under the new controller (17), the whole composite
system is then

ẋ1, i = x2,i

...

ẋni,i =
(
θᵀi − θ̂ᵀi

)
pi(xi, t)

+
1

εni

⎡
⎣k1i(x1,i − zi) +

ni∑
j=2

εj−1kjixj, i

⎤
⎦

˙̂
θi = φi

(
xi, θ̂i, zi, t

)

żi = − α

N∑
j=1

aij(zi − zji )−∇iJi
(
yi, z

i
−i

)

żik = − α

N∑
k=1

aij

(
zik − zjk

)
, k ∈ � \{i}.

By applying the same transformation of coordinates as in
system (12), we can put the above composite system into a
compact form as follows:

˙̂x =
1

ε
Ax̂−B1ż + EB2p

ᵀ(x, t)θ

θ̇ = φ
(
x, θ̂, z, t

)
ż = −αLz−RF (z)−RΔ1. (18)

Note that the third subsystem can be further rewritten in the
(z1, z2) coordinate as

ż1 = − (Mᵀ
1 ⊗ IN )RΔ− (Mᵀ

1 ⊗ IN )RΔ1

ż2 = − α[(Mᵀ
2 LM2)⊗ IN ]z2

− (Mᵀ
2 ⊗ IN )RΔ− (Mᵀ

2 ⊗ IN )RΔ1.

Next, we use the same Lyapunov function V̂ =
∑N

i=1 V̂i +
c3V0 for this new composite system (13) with c3 > 0 defined
as in the proof of Theorem 1. Following a similar procedure in
deriving (14) in the proof of Theorem 1, we have

˙̂
V ≤ −

N∑
i=1

1

ε
||x̂i||2 + c1

N∑
i=1

||żi||2

− c3z
ᵀ
1 (M

ᵀ
1 ⊗ IN )R

(
Δ+Δ1

)
− c3z

ᵀ
2{α [(Mᵀ

2 LM2)⊗ IN ] z2

+ (Mᵀ
2 ⊗ IN )R

(
Δ+Δ1

)}
≤ −

N∑
i=1

1

ε
||x̂i||2 + c1

N∑
i=1

||żi||2 − c3νV0 − c3z̃
ᵀRΔ1

≤ − 1

ε
||x̂||2 − V0 − c3||z||||Δ1||

where we use ||z̃|| = ||z||. By Young’s inequality and the l-
Lipschitzness of Δ1 with respect to x̂, it follows that

˙̂
V ≤ −1

ε
||x̂||2 − V0 +

1

4
||z||2 + 4c23 l

2||x̂||2

≤ −
(
1

ε
− 4c23 l

2

)
||x̂||2 − 1

2
V0.

Setting ε∗ = 1
4c23 l2+1

and ε ∈ (0, ε∗), we can obtain the follow-
ing inequality:

˙̂
V ≤ −||x̂||2 − 1

2
V0

At this moment, we recall [29], Th. 2.1] again and conclude that
all trajectories of the closed-loop system (18) are bounded over
the time interval [0, +∞) and satisfy that limt→∞ ||x̂i(t)|| =
0 and limt→∞ V0(t) = 0. Then, we confirm the bounded-
ness of xj,i(t), θ(t) and conclude limt→∞[yi(t)− zi(t)] = 0,
limt→∞[zi(t)− y∗] = 0. By the triangle inequality again, it fol-
lows that |yi(t)− y∗i | ≤ |yi(t)− zi(t)|+ |zi(t)− y∗i | → 0 as
t → +∞. �

Remark 7: Theorem 2 shows that when a real-time gradient is
applied, the algorithm can still have convergence properties. In
that case, there exists a strongly coupling between the physical
dynamics and information measurement (thus the gradient). It
shows that even though the proposed embedded methodology
takes a decoupling pipeline for algorithm design, it can also han-
dle the cases when there are close bidirectional cyber-physical
feedback connections.

Remark 8: The specified parameter ε is in a high-gain fashion
to compensate for the interconnection between the virtual agent
dynamic (15) and the tracking controller (10). The given choice
of ε∗ heavily relies on some bounds of matrix norms. Thus,
determining the largest parameter ε∗ in controller (17) might be
nontrivial. In practice, one may choose an applicable parameter
ε by numerical simulations to avoid this tedious job.

D. Parameter Convergence

From the proofs of Theorems 1 and 2, one can merely con-
clude that θ̂i(t) converges to some constant as t tends to +∞.
However, this constant may not be the associated true value θi.
Since parameter convergence has been shown to be essential in
achieving robustness of the adaptive controllers [38], [39], we
assert conditions under which the estimator θ̂i(t) will converge
to its true value θi as t tends to +∞.

To this end, we further assume the basis function pi(xi, t)
satisfies the following condition.
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Fig. 3. Communication digraph � in Example I.

Assumption 5: For any i = 1, . . . , N , along the trajectory
of the closed-loop system composed of (1) and (10), there exist
positive constants m, t0, T0 such that the function pi(xi(t), t)
is uniformly bounded and the following inequality is satisfied:

1

T0

∫ t+T0

t

pi(xi(τ), τ)p
ᵀ(xi(τ), τ)dτ ≥ mInθi

∀t ≥ t0.

Note that xi(t) is ultimately bounded by Theorem 1, the
boundedness of pi(xi(t), t) is not too strict. The above in-
equality is known as a version of the well-known persistence of
excitation (PE) condition and has been widely used in adaptive
control literature [29], [30], [40].

Theorem 3: Suppose Assumptions 1–5 hold. Then, along
the trajectory of system (1) under the controllers proposed in
Theorems 1 and 2, limt→+∞ θ̂i(t) = θi holds for each i ∈ �.

Proof: To show this theorem, we first claim that
limt→+∞ θ

ᵀ
i (t)pi(xi(t), t) = 0. By the proof of Theorems 1

and 2, we have x̂i(∞) =
∫ +∞
0

˙̂xi(τ)dτ = 0. From the uniform
boundedness of associated variables and Assumption 5, it fol-
lows that ¨̂xi(t) is also bounded. Using [31], Lemma 8.2] to ˙̂xi(t)
implies that limt→+∞ ˙̂xi(t) = 0, which confirms this claim.

Next, since θ̇i =
˙̂
θi = pi(xi, t)b

ᵀ
2iPix̂i, it follows that

limt→+∞ θ̇i(t) = 0. According to [41], Lemma 1], the two

facts limt→+∞ θ̇i(t) = 0 and limt→+∞ θ
ᵀ
i (t)pi(xi(t), t) = 0

provide us that limt→+∞ θi(t) = 0 under Assumption 5. �
Remark 9: Note that the unknown dynamics is supposed to

be linearly parameterized in this article. This structure allows
us to further improve Theorem 3 and apply it to any number of
components in pi(xi, t) satisfying such a PE condition. In this
way, we can address the parameter convergence problem in a
more precise way. Specially, when the basis function is time-
invariant, the jth component pj,i(xi) of pi(xi) is persistently
excited if limxi→col(y∗

i,0, ...,0)
pj,i(xi) �= 0, which ensures the

convergence of θ̂j,i(t) to θj,i as t goes to infinity.

V. SIMULATION

In this section, we present numerical examples to illustrate
the effectiveness of our preceding design.

Example 1: Consider a group of N = 10 firms and suppose
they produce a homogeneous perishable commodity [42]. The
inventory system at firm i can be modeled as

İi = −γiIi + Pi −Di, i ∈ � (19)

where Ii is the inventory level, γi is the deterioration rate, Pi is
the production rate, and Di is demand rate at firm i. Suppose
these firms can share information through a cycle digraph with
unity weights depicted in Fig. 3.

Fig. 4. Profiles of zi(t) under the algorithm (4) in Example 1.

To meet a safety requirement imposed by some authority in
this market (e.g., the government), these firms are expected
to maintain their total inventory at a certain level Ir > 0 by
changing its production rate Pi. The total cost function of
firm i is given as Ji(Ii, I−i) = Ci(Ii)− Ii ∗ σ(I1, . . . , IN ),
where Ci(s) = αis is the storage cost and σ(I1, . . . , IN ) =

δ0(Ir −
∑N

i=1 Ii) is the subsidies per unit provided by this
market authority with known constants αi, δ0 > 0. To make it
more interesting, we suppose that the deterioration rate γi and
the demand rate Di at agent i are both constant but unknown.
Letting θi = col(−γi, Di) and p(Ii, t) = col(−Ii, 1), we can
find that these firms play a noncooperative game with cost
function Ji and unknown dynamics of the form (19) with input
Pi and output Ii. Moreover, Assumptions 1–4 can be practically
verified. Then, according to Theorem 1, we can determine a
distributed controller composed of (4) and (10) with ni = 1 to
solve the formulated problem for agent (19).

For simulations, we assume N = 10 and let αi = i/10,
Ir = 22, δ0 = 1, θi = i

2 , and Di = 10− i. The Nash equilib-
rium is determined as y∗ = col(y∗1, . . . , y10) with y∗i = 2.5−
αi for i = 1, . . . , N . Choose α = 4, k1 = −4 for the controller
(10) and the initial inventory levels randomly from [0, 5]. The
generated reference for each agent is depicted in Fig. 4. To verify
the efficiency of our controller in handing unknown dynamics,
we shut down the adaptive part between t = 100s and t = 150s.
The profiles of agent outputs and control efforts are shown in
Figs. 5 and 6, where the expected Nash equilibrium y∗ is quickly
reached before t = 100s and the control efforts are maintained
to be bounded. Moreover, we can find that the steady state of
each agent deviates from the expected Nash equilibrium y∗ after
t = 100s and soon recovers after t = 150s.

Example 2: Consider the source-seeking problem via mobile
sensor networks. Suppose we have a group of five force-actuated
mobile robots in the plane modeled as follows:

ÿi = ui + di (20)

where yi ∈ R2, ẏi ∈ R2, and ui ∈ R2 are, respectively, the
position, velocity, and control input of agent i. Here, di ∈ R2

is a local actuating disturbance of agent i. The communication
topology is represented by an undirected graph with unity edge
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Fig. 5. Profiles of Ii(t) under the controller (4) and (10) in Example 1.

Fig. 6. Profiles of Pi(t) under the controller (4) and (10) in Example 1.

Fig. 7. Communication digraph � in Example 2.

weights depicted as Fig. 7 . The robots are designed to seek and
surround a source of some signal with unknown distribution and
keep close to each other for preserving connectivity.

Similar as in [2] and [18], we suppose the unknown distribu-
tion is quadratic as f(s) = f ∗ + 1

2 ||s− s∗||2 with source at s∗ ∈
R2. Choose a cost function Ji for robot i as Ji(yi, y−i) = ||yi −
s∗ − ri||2 + λ

∑5
j=1 ||yi − yj ||2 with ri a translation vector for

surrounding and a regularized parameter λ > 0 reflecting the
importance of connectivity. Then, these mobile robots play
a noncooperative game. It has a unique Nash equilibrium at

y∗ = col(y∗1, . . . , y
∗
5) with y∗i =

6 s∗+ri+
∑5

j=1 rj
5λ+1 .

Since the distribution f (or equivalently, the source location
s∗) is unknown a priori, the generator (4) is not implementable.
Nonetheless, we still can measure or learn the real-time gradient

Fig. 8. Profiles of yi(t) under the controller (15) and (21) in Example
2.

Fig. 9. Profiles of yi(t) under the controller (15) and (22) in Example
2.

Fig. 10. Communication digraph � in Example 3.

∇f(yi) = yi − s∗ of the distribution by onboard sensors at
each position yi during the convergence process. Then, we can
compute the real-time partial gradient ∇iJi(yi, z

i
−i) and use

algorithm (17) to solve this problem.
Moreover, agent i is supposed to have a nonconstant actuating

disturbance modeled by di(t) = Divi(t), v̇i = Sivi with

Di =

[
1 + μ1 1 + μ2 μ3

1 + μ4 μ5 1 + μ6

]
, Si =

⎡
⎢⎣0 0 0

0 0 i

0 −i 0

⎤
⎥⎦
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Fig. 11. Profiles of zi(t) under the controller (17) in Example 3.

Fig. 12. Profiles of yi(t)− y∗i under the controller (17) in Example 3.

where µ = col(μ1, . . . , μ6) ∈ R6 is an uncertain parameter
vector satisfying |μi| ≤ 0.2. Although the pair (D, S) is ver-
ified to be observable, the observer-based approach proposed
in [18] fails to solve this problem due to the uncertain parameter
µ. Next, we show how to solve it by choosing a distributed
controller of the form (2) for each input channel of (20).

Note that the disturbance can be represented as
di(t) = A0i +A1i sin(i t) +A2i cos(i t) for some constant
vectors A0i, A1i, A2i ∈ R2 depending upon the initial value
vi(0) and matrix D. Then, agent (20) can be rewritten into
the form (1) with ni = 2, x1, i = yi, x2, i = ẏi, pi(xi, t) =
col(1, sin(i t), cos(i t)), and θi = col(Aᵀ

0i, A
ᵀ
1i, A

ᵀ
2i) ∈ R3×2.

Thus, we present the following tracking controller for agent i:

ui = −θ̂ᵀi pi(xi, t)− 4(x1, i − z1, i)− 4x2, i

˙̂
θi = 5pi(xi, t)

[
1

4
(x1, i − zi) +

5

16
x2, i

]ᵀ
. (21)

For simulations, we suppose that the source is at the origin and
λ = 1. Set ri = col(cos(iω∗), sin(iω∗)) with ω∗ = 2π

5 . Choose
the initial conditions randomly and mark the start position of

Fig. 13. Profiles of θ̂i,j(t) under the controller (17) in Example 3.

each robot by crosses. The evolution of robots’ positions is
shown in Fig. 8. One can find that the robots finally reach
the Nash equilibrium position of the associated noncooperative
game marked by circles. In comparison, we remove the adaption
component in (21) and use the following static controller for
agent i:

ui = −4(x1, i − z1, i)− 4x2, i. (22)

Note that the closed-loop system under this controller is input-to-
state stable with respect to the actuating disturbance as the input.
Then, the output of agents will finally enter into a neighborhood
of the Nash equilibrium, whose size depends on the strength of
the disturbance. Moreover, these outputs cannot converge to the
expected position, as shown in Fig. 9. These observations verify
the effectiveness of our controller in handing unknown external
disturbances.

Example 3: Consider a multiagent system including four
controlled Van der Pol systems as follows:

ẋ1,i = x2,i

ẋ2,i = −aix1,i + bi
(
1− x2

1,i

)
x2,i + ui

yi = x1,i, i = 1, 2, 3, 4

where ai, bi are unknown positive constants. The information
sharing graph of this multiagent system is depicted in Fig. 10
with unity edge weights.

We consider the Nash equilibrium seeking problem for this
multiagent system with a local cost functionJi(yi, y−i) = (yi −
yi0)

2 − yi(pi
∑4

i=1 yi + qi) for agent i with i = 1, 2, 3, 4.
Note that all these agents have unknown nonlinear dynamics.
To make it more interesting, we further assume that agent i has
an actuating disturbance di(t) as in Example 2 described by
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different system matrices

Di =
[
1 + μ1 μ2

]
, Si =

[
0 i

−i 0

]

with uncertain parameters |μ1| ≤ 0.5 and |μ2| ≤ 0.5.
Denote Δi(xi, t) = −aix1,i + bi(1− x2

1,i)x2,i + di(t).
Note that di(t) = A1i sin(i t) +A2i cos(i t) for some constants
A1i, A2i depending upon the initial value vi(0) and Di. We let

pi(xi, t) = col
(−x1,i, (1− x2

1,i)x2,i, sin(i t), cos(i t)
)

θi = col(θ1,i, . . . , θ4,i) = col(ai, bi, A1i, A2i).

Then, these agents have been put into the form (1) with basis
function vector pi(xi, t) defined as above and an unknown
parameter vector θi ∈ R4.

We let pi = 0.1, qi = 1, yi0 = i and set the system pa-
rameters in agents as ai = bi = 1, μ1 = 0.1, μ2 = −0.1,
vi(0) = col(0, 2) for i = 1, . . . , 4. Assumptions 1–4 can be
practically verified. Moreover, the Nash equilibrium of this
noncooperative game isy∗ = col(2.42, 3.47, 4.53, 5.58)by nu-
merical computations. According to Theorems 1 and 2, the Nash
equilibrium seeking problem for these agents can be solved by
different kinds of distributed controllers of the form (2). For
simulations, we use the controller (17) using only real-time
gradients. Choose α = 4 for the virtual game dynamics (4)
and k1i = −4, k2i = −4, Λi = 5I4, ε = 0.8 for the adaptive
tracking controller. All initials are randomly chosen. Applying
controller (17) to agent (1), the profiles of zi(t) and regulation
error yi(t)− y∗i are shown in Figs. 11 and 12. It can be found
that the Nash equilibrium y∗ is quickly reproduced even with
real-time gradients while the convergence error yi(t)− y∗i van-
ishes irrespective of the unknown nonlinearity Δi and external
disturbance di(t).

To explore the parameter convergence issue, we resort to
Theorem 3 and Remark 9 and conclude that the estimators θ̂1,i,
θ̂3,i, θ̂4,i will converge to their true values, while θ̂2,i may fail.
These conclusions can be confirmed by Fig. 13.

VI. CONCLUSION

In this article, a Nash equilibrium seeking problem has been
investigated for a typical class of high-order nonlinear systems
with unknown dynamics. Following an embedded control pro-
cedure, we have developed a distributed adaptive controller to
solve this problem under standard assumptions. The parameter
convergence issue has also been addressed under some PE con-
ditions. The algorithms show that we can achieve a co-design of
decision making module, adaptive parameter estimating module,
and tracking controller for general cyber-physical networks.
Output feedback and coupling constraints for more general agent
dynamics will be considered in our future work.
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