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Abstract This paper studies the distributed optimization problem when the objective functions

might be nondifferentiable and subject to heterogeneous set constraints. Unlike existing subgradient

methods, the authors focus on the case when the exact subgradients of the local objective functions

can not be accessed by the agents. To solve this problem, the authors propose a projected primal-

dual dynamics using only the objective function’s approximate subgradients. The authors first prove

that the formulated optimization problem can generally be solved with an error depending upon the

accuracy of the available subgradients. Then, the authors show the exact solvability of this distributed

optimization problem when the accumulated approximation error of inexact subgradients is not too

large. After that, the authors also give a novel componentwise normalized variant to improve the

transient behavior of the convergent sequence. The effectiveness of the proposed algorithms is verified

by a numerical example.

Keywords Constrained optimization, distributed optimization, ε-subgradient, primal-dual dynamics

1 Introduction

The last decade has witnessed considerable interests in distributed optimization problems
due to the numerous applications in signal processing, control, and machine learning. To solve
this problem, subgradient information of the objective functions has been widely used due to
the cheap iteration cost and well-established convergence properties[1, 2].

Note that most of these subgradient-based results assume the availability of local cost func-
tion’s exact subgradients. In many circumstances, the function subgradient is computed by
solving another auxiliary optimization problem as shown in [3–6]. In practice, we are often only
able to solve these subproblems approximately. Hence, in that context, numerical methods solv-
ing the original optimization problem are provided with only inexact subgradient information.
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This leads us to investigate the solvability of distributed optimization problem using inexact
subgradient information.

A close topic is the inexact augmented Lagrangian method. As surveyed in [7], this method
has been extensively extended to distributed settings in various ways assuming the primal
variables are only obtained in an approximate sense. Nevertheless, most of these results still
require the exact gradient or subgradient information of the local objective functions at each
given estimate. It is interesting to ask whether the primal-dual method is still effective when
only inexact gradient/subgradient information is available.

In this paper, we focus on a typical distributed consensus optimization problem for a sum
of convex objective functions subject to heterogeneous set constraints. Although this problem
has been partially studied by gradient/subgradient methods in [8–14], its solvability using only
inexact subgradient information has not yet been addressed and is still unclear at present.
To solve this problem, we convert it into a saddle point seeking problem and present a pro-
jected primal-dual ε-subgradient dynamics to deal with the distributedness requirement and
set constraints.

The contribution of the paper is summarized as follows:

• We develop a novel primal-dual ε-subgradient method for the distributed consensus op-
timization problem. When the objective functions are smooth with exact gradients, the
proposed algorithms reduce to the primal-dual dynamics considering in [9, 11]. By con-
trast, the presented results do not require the exact knowledge of the subgradient infor-
mation of the objective functions. To our knowledge, this might be the first attempt to
solve the formulated distributed optimization problem using only inexact subgradients of
the local objective functions.

• We investigate the convergence property of the presented method and its suboptimality
to solve the formulated problem depending on the accuracy of available subgradients. In
particular, we show that if the accumulated error resulting from the subgradient inex-
actness is not too large, the proposed algorithm under certain diminishing step size will
drive all the estimates of agents to reach a consensus about an optimal solution to the
global optimization problem. These results extend the conventional ε-subgradient method
discussed in [3, 6, 15, 16] to distributed scenarios.

• We also propose a novel componentwise normalized step size as that in [17] to improve
the transient performance of our preceding designs. As a byproduct, this normalized step
size removes the widely used subgradient boundedness assumption in the literature [8, 9].

The rest of this paper is organized as follows. We first give some preliminaries in Section 2
and then introduce the formulation of our problem in Section 3. Main results are presented in
Section 4. After that, we give a numerical example in Section 5 to show the effectiveness of our
design. Finally, some concluding remarks are given in Section 6.
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2 Preliminary

In this section, we first give some preliminaries about graph theory and convex analysis.

2.1 Graph Theory

Let R
n be the n-dimensional Euclidean space and R

n×m be the set of all n × m matrices.
1n (or 0n) denotes an n-dimensional all-one (or all-zero) column vector and 1n×m (or 0n×m)
all-one (or all-zero) matrix. col(a1, · · ·, an) = [aT

1 , · · ·, aT
n ]T for column vectors a1, · · · , an. For

a vector x (or matrix A), ‖x‖ (‖A‖) denotes its Euclidean (or spectral) norm.
A weighted (undirected) graph G = (N , E ,A) is defined as follows, where N = {1, · · ·, n}

is the set of nodes, E ⊂ N × N is the set of edges, and A ∈ R
n×n is a weighted adjacency

matrix. (i, j) ∈ E denotes an edge leaving from node i and entering node j. The weighted
adjacency matrix of this graph G is described by A = [aij ] ∈ R

n×n, where aii = 0 and aij ≥ 0
(aij = aji > 0 if and only if there is an edge between nodes j and i ). The neighbor set of agent
i is defined as Ni = {j : (j, i) ∈ E} for i = 1, 2, · · · , n. A path in graph G is an alternating
sequence i1e1i2e2 · · · ek−1ik of nodes il and edges em = (im, im+1) ∈ E for l = 1, 2, · · · , k. If
there exists a path from node i to node j then node i is said to be reachable from node j. The
Laplacian L = [lij ] ∈ R

n×n of graph G is defined as lii =
∑

j �=i aij and lij = −aij(j �= i). It can
be found that the Laplacian is symmetric and semi-definite. Denote its ordered eigenvalues as
0 = λ1 ≤ λ2 ≤ · · · ≤ λN . The corresponding eigenvector of λ1 = 0 is the all one vector 1N .
Moreover, λ2 > 0 if and only if this graph G is connected.

2.2 Convex Analysis

For each set X ∈ R
m, the indicator function is denoted by δX with δX(x) = 0 for any x ∈ X

and δX(x) = ∞ for any x /∈ X . A set X ∈ R
m is said to be convex if θx + (1 − θ)y ∈ X

for any x, y ∈ X and θ ∈ (0, 1). For a closed convex set X �= ∅, the projection operator
PX : R

m → X is defined as PX [x] = argminy∈X ‖y − x‖. The projection operator is non-
expansive in the sense that ‖PX [x] − PX [y]‖ ≤ ‖x − y‖ for any x, y ∈ R

m. For any x ∈ R
m, it

holds (x − PX [x])T(y − PX [x]) ≤ 0, ∀y ∈ X .
For a given function f : R

m → R, we denote by dom f = {x ∈ R
m | |f(x)| < ∞} the domain

of f . We always assume that dom f �= ∅ and dom f = R
m if not specified. We say it is convex

if its domain is convex and f(αx + (1 − αy)) ≤ αf(x) + (1 − α)f(y) holds for all x, y ∈ dom f

and α ∈ [0, 1]. If this inequality is strict in the sense that the equation holds only if x = y,
the function is called strictly convex. A function f is called closed and convex on a convex set
X ⊂ dom f if its constrained epigraph epiX(f) = {(x, t) ∈ X ×R | t ≥ f(x)} is a closed convex
set. If X = dom f , we call f a closed convex function.

A vector-valued function f : R
m → R

m is Lipschitz with constant ϑ > 0 (or simply ϑ-
Lipschitz) if we have

‖f(ζ1) − f(ζ2)‖ ≤ ϑ‖ζ1 − ζ2‖, ∀ζ1, ζ2 ∈ R
m.

Let us consider a function φ : X × Z → R, where X and Z are nonempty subsets of R
n

and R
m, respectively. A pair of vectors x∗ ∈ X and z∗ ∈ Z is called a saddle point of φ if
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φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗) holds for any x ∈ X and z ∈ Z.

3 Problem Formulation

In this paper, we focus on solving the following constrained optimization problem by a
network of N agents:

min f(x) =
N∑

i=1

fi(x)

s.t. x ∈ X �
N⋂

i=1

Xi. (1)

Here function fi : R → R and set Xi are private to agent i for each i ∈ N � {1, 2, · · · , N} and
can not be shared with others.

To ensure its solvability, the following assumption is made.

Assumption 3.1 For each i ∈ N , function fi : R → R is convex, set Xi is convex and
closed, and int X =

⋂
i∈N intXi is nonempty and contained in dom fi.

Note that fi might be nondifferentiable under this assumption. Denote the minimal value
of the problem (1) by f∗ and the optimal solution set by X ∗, i.e., f∗ = minx∈X f(x) and
X ∗ = {x ∈ X | f(x) = f∗}. As usual, we assume f∗ is finite and set X ∗ is nonempty. To
cooperatively address the optimization problem (1) in a distributed manner, we use a weighted
undirected graph G = {N , E , A} to describe the information sharing relationships with node
set N , edge set E ⊂ N ×N , and weight matrix A = [aij ]N×N . Here aij = aji > 0 means agents
i and j can communicate with each other.

Assumption 3.2 Graph G is connected.

Suppose that agent i maintains an estimate xi of the optimal solution to (1) with other
(possible) auxiliary variables. Agents exchange these variables through the communication
network described by G and perform some updates at given discrete-time instants k = 1, 2, · · · .
Then, the distributed optimization problem in this paper is formulated to find an update rule
of xi(k) for agent i using only its own and neighboring information such that limk→∞[xi(k) −
xj(k)] = 0 for any i, j ∈ N and limk→∞

∑N
i=1 fi(xi(k)) = f∗. If possible, we expect that all

the estimates will converge to an optimal solution to the problem (1).
As stated above, this problem has been intensively studied in literature [1, 2]. However,

most existing designs require the exact subgradients of the local objective functions in con-
structing effective distributed algorithms. In this paper, we are interested in the solvability of
the formulated distributed optimization problem (1) working with inexact subgradients of the
local objective functions. For this purpose, we adopt the notion of ε-subgradient to describe
such inexactness as in [4, 18] and assume the ε-subgradient of fi can be easily computed for
any given ε ≥ 0. It should be noted that assuming the knowledge of ε-subgradient is more con-
ceptual than concrete. In practice, ε-subgradient often arises in the numerical approximation
of classical algorithms, e.g., proximal method and bundle method[3, 4, 16, 19].
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Definition 3.1 For a convex function f : R
m → R and a scalar ε > 0, g ∈ R

m is said to
be a ε-subgradient of f at x ∈ R

m if

f(y) ≥ f(x) + gT(y − x) − ε, ∀y ∈ dom f.

Denote by ∂εf(x) the ε-subdifferential of f at x ∈ R
m, which is the set of all ε-subgradients

of f at x. ∂εf(x) is nonempty and convex for any x ∈ R
m due to the convexity of f . Moreover,

∂0f(x) coincides with the subdifferential of f at x ∈ R
m.

In next section, we will convert our problem into a saddle-point seeking problem and develop
a projected primal-dual ε-subgradient method with rigorous solvability analysis.

4 Main Result

To begin with, we rewrite the problem (1) into an alternative form as in [11, 20]:

min f̃(x) =
N∑

i=1

fi(xi)

s.t. Lx = 0N , (2)

x ∈ X̃ � X1 × · · · × XN ,

where x = col(x1, · · · , xN ) and L is the Laplacian of graph G. Note that L is symmetric and
positive semi-definite with its ordered eigenvalues as 0 = λ1 < λ2 ≤ · · ·λN under Assump-
tion 3.2 by Theorem 2.8 in [21].

Consider the augmented Lagrangian function of the problem (2):

Φ(x, v) = f̃(x) + vTLx +
1
2
xTLx (3)

with v = col(v1, · · · , vN ) ∈ R
N . By Proposition 3.4.1 in [4], if Φ has a saddle point (x∗, v∗)

in X̃ ×R
N , then x∗ must be an optimal solution to the problem (2), which in turn provides an

optimal solution to (1). Since the Slater’s condition holds under Assumption 3.1, such saddle
points indeed exist by virtue of Theorems 3.34 and 4.7 in [22]. Thus, it suffices for us to seek
a saddle point of Φ in X̃ × R

N .
Following this conversion, many solvability results on the problem (1) have been presented

when the exact gradient or subgradient of fi is available, e.g., [11, 17, 20, 23–25]. However,
whether and how ε-subgradient algorithms can be derived has not been discussed yet. To this
end, we are motivated by aforementioned saddle-point seeking designs and present the following
dynamics:

xi(k + 1) = PXi [xi(k) − αk(gi(k) + x̂i(k) + v̂i(k))],

vi(k + 1) = vi(k) + αkx̂i(k),
(4)

where x̂i(k) �
∑N

j=1 aij(xi(k)−xj(k)), v̂i(k) �
∑N

j=1 aij(vi(k)−vj(k)), and gi(k) ∈ ∂εk
fi(xi(k))

with parameters εk, αk > 0 to be specified later. It can be taken as a constrained version of
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algorithms in [23, 24]. Different from similar primal-dual designs in [11, 20], we do not require
the differentiability of these objective functions or their exact gradients.

Letting x(k) = col(x1(k), · · · , xN (k)) and v(k) = col(v1(k), · · · , vN (k)), we can put (4) into
a compact form:

x(k + 1) = PX̃ [x(k) − αk(g(k) + Lv(k) + Lx(k))],

v(k + 1) = v(k) + αkLx(k)
(5)

with g(k) = col(g1(k), · · · , gN(k)) ∈ ∂Nεk
f̃(x(k)) ∈ R

N . It can be further rewritten as follows:

z(k + 1) = PX [z(k) − αkTεk
(z(k))], (6)

where z(k) = col(x(k), v(k)), X = X̃ × R
N , and

Tεk
(z(k)) =

⎡

⎣
g(k) + Lv(k) + Lx(k)

−Lx(k)

⎤

⎦ .

To establish the effectiveness of this algorithm, another assumption is made as follows.

Assumption 4.1 The εk-subgradient sequence {gi(k)} is uniformly bounded for each i,
i.e., there exists a scalar C > 0 such that maxi∈N {‖gi(k)‖} < C all k > 0.

This assumption is temporally made for simplicity as in [9, 26] and will be further removed
later by some novel step sizes later. Suppose z∗ = col(x∗, v∗) is a saddle point of Φ in X̃×R

N .
Here is a key lemma under Assumption 4.1.

Lemma 4.1 Suppose Assumptions 3.1, 3.2, 4.1 hold. Along the trajectory of the algo-
rithm (4), there exists some C1 > 0 such that, for any k = 1, 2, · · · , the following inequality
holds:

‖z(k + 1) − z∗‖2 ≤ (1 + C1α
2
k)‖z(k) − z∗‖2 − 2αkΔ(x(k)) + 2Nαkεk + C1α

2
k, (7)

where Δ(x(k)) � Φ(x(k), v∗) − Φ(x∗, v∗) + 1
2x(k)TLx(k) ≥ 0.

Proof By lemma conditions, (x∗, v∗) is a saddle point of Φ. Then, Δ(x(k)) � Φ(x(k), v∗)−
Φ(x∗, v∗) + 1

2x(k)TLx(k) ≥ 0 can be easily verified by the definition of saddle points.
Next, we consider the evolution of ‖z(k)−z∗‖2 with respect to k. Under the iteration (4),

it follows then

‖z(k + 1) − z∗‖2

= ‖PX [z(k) − αkTεk
(z(k))] − z∗‖2

≤‖z(k) − αkTεk
(z(k)) − z∗‖2 − ‖z(k) − αkTεk

(z(k)) − PX [z(k) − αkTεk
(z(k))]‖2

≤‖z(k) − z∗‖2 − 2αk(z(k) − z∗)TTεk
(z(k)) + α2

k‖Tεk
(z(k))‖2. (8)

By the proprieties of saddle point and εk-subgradient, we have

(z(k) − z∗)TTεk
(z(k)) = (x(k) − x∗)T(g(k) + Lv(k) + Lx(k)) − (v(k) − v∗)TLx(k)
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≥ f̃(x(k)) − f̃(x∗) − Nεk + v∗TLx(k) + x(k)TLx(k)

= Φ(x(k), v∗) − Φ(x∗, v∗) +
1
2
x(k)TLx(k) − Nεk

= Δ(x(k)) − Nεk. (9)

Since Lx∗ = 0, Tεk
(z(k)) can be rewritten as

Tεk
(z(k)) =

⎡

⎣
g(k) + L(x(k) − x∗) + L(v(k) − v∗) + Lv∗

−L(x(k) − x∗)

⎤

⎦ .

Under Assumption 4.1, there must be constant C1 > 0 such that

‖Tεk
(z(k))‖2 ≤ C1(1 + ‖z(k) − z∗‖2). (10)

Putting all inequalities (8)–(10) together, we have

‖z(k + 1) − z∗‖2 ≤ (1 + C1α
2
k)‖z(k) − z∗‖2 − 2αkΔ(x(k)) + 2Nαkεk + C1α

2
k,

which is exactly the expected inequality (7).
When the exact subgradient is available (i.e., εk = 0), the inequality (7) can be simplified

into the well-known supermartingale inequality ensuring the convergence of z(k) towards z∗ as
shown in [4] if {αk} is chosen to satisfy

∞∑

k=1

αk = ∞,

∞∑

k=1

α2
k < ∞. (11)

However, the inexactness of available subgradients deteriorates this property and the expected
convergence might fail when we use only ε-subgradients in the iteration (4).

Let us denote Δ = lim infk→∞ Δ(x(k)) and take a closer look at the inequality (7). Note
that Δ consists of two parts, i.e., the discrepancy of function values and violation of constraints
(in term of consensus error) of the iterative sequence. In fact, when Δ = 0, the associated
iterative sequences necessarily reach a consensus such that limk→∞ f̃(x(k)) = f∗. Thus, this
value Δ can be taken as a measure of suboptimality of the iterative sequence. In other words,
we can determine the upper bound for Δ to evaluate the effectiveness of the algorithm (4).

We first consider the case when εk is constant.

Theorem 4.2 Suppose Assumptions 3.1, 3.2, 4.1 hold. Let the step size αk be chosen to
satisfy (11) and εk = ε0 > 0 for all k > 0. Then, along the trajectory of the algorithm (4), it
holds that

0 ≤ Δ ≤ Nε0. (12)

Proof To prove this theorem, we only have to show that Δ ≤ Nε0. If the inequality does not
hold, there must exist a δ > 0 and a sufficient large integer K1 > 1 such that Δ(x(k)) > Nε0+δ

for all k ≥ K1. By (11), we have limk→∞ αk = 0. Thus, there must exist an integer K2 > 1
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such that 0 < αk ≤ δ
C1

for all k ≥ K2. Bringing these conditions together, one can strengthen
the inequality (7) for all k ≥ K � max{K1, K2} as follows:

‖z(k + 1) − z∗‖2 ≤ (1 + C1α
2
k)‖z(k) − z∗‖2 − αkδ.

Summing up its both sides from K to K > K gives

‖z(K + 1) − z∗‖2 ≤ ‖z(K) − z∗‖2
K∏

k=K

(1 + C1α
2
k) − δ

K∑

k=K

αk,

where we use 1 + C1α
2
k > 1 to handle the cross terms.

Note that 1 + θ ≤ eθ for any θ > 0. Hence
∏K

k=K(1 + C1α
2
k) ≤ eC1

∑ K
k=K α2

k ≤ eC1
∑∞

k=1 α2
k .

Under the condition (11), there must exist a positive scalar C > 0 such that

‖z(K + 1) − z∗‖2 ≤ C‖z(K) − z∗‖2 − δ
K∑

k=K

αk,

which can not hold for a sufficiently large K since
∑∞

k=1 αk = ∞. We obtain a contradiction
and complete the proof.

Remark 4.3 According to Theorem 4.2, one can generally obtain a suboptimal solution
to the problem (1) using inexact subgradients. If we are interested in an exact solution, it
is required to ensure limk→∞ εk = 0. For a very special case when εk = 0, it shows the
effectiveness of our algorithm (4) in solving the formulated problem (1) with exact subgradients.
This observation is consistent with the existing subgradient methods in [12–14, 17, 24].

With Theorem 4.2, it is natural for us to enforce some stronger condition on the error εk for
a better convergence performance of the entire sequence {xi(k)}. Along this line, we provide
another theorem supposing the accumulated error of subgradient inexactness is not too large.

Theorem 4.4 Suppose Assumptions 3.1, 3.2, 4.1 hold. Let the parameters αk, εk > 0 be
chosen to satisfy the following condition:

∞∑

k=1

αk = ∞,

∞∑

k=1

α2
k < ∞,

∞∑

k=1

αkεk < ∞. (13)

Then, along the trajectory of the algorithm (4), we have:
1) The sequence {‖z(k + 1) − z∗‖} converges;
2) The estimates x1(k), · · · , xN (k) reach an optimal consensus in the sense that limk→∞

[xi(k) − xj(k)] = 0 and limk→∞ f̃(x(k)) = f̃(x∗) = f∗;
3) {z(k)} has at least one cluster point z = col(x, v) such that x = 1Nx∗ with x∗ being an

optimal solution to the problem (1);
4) If the optimal solution to the problem (1) is unique, i.e., X ∗ = {x∗}, then limk→∞ xi(k) =

x∗ for each i ∈ N .

Proof Note that Δ(x(k)) ≥ 0 by Lemma 4.1 and
∑∞

k=1 αkεk +
∑∞

k=1 α2
k < ∞ under the

theorem assumption. Applying Lemma 5.31 in [27] to the inequality (7), we can obtain the
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convergence of {‖z(k + 1) − z∗‖} and

0 ≤
∞∑

i=1

αkΔ(x(k)) < ∞. (14)

Thus, the sequence {z(k)} must be uniformly bounded by some C2 > 0. From the continuity
of Δ(x), it must be C3-Lipschitz with respect to x for some constant C3 > 0. It follows then

Δ(x(k + 1)) − Δ(x(k)) ≤ C3‖x(k + 1) − x(k)‖
= C3‖PX̃ [x(k) − αk(g(k) + Lv(k) + Lx(k))] − x(k)‖
≤ C3‖x(k) − αk(g(k) + Lv(k) + Lx(k)) − x(k)‖
≤ C3αk‖g(k) + Lv(k) + Lx(k)‖
≤ C3(

√
NC + 2λmax(L)C2)αk. (15)

Jointly using (14), (15), and
∑∞

k=1 αk = ∞, we resort to Proposition 2 in [15] and conclude
that limk→∞ Δ(x(k)) = 0. Recalling the expression of Δ, we have limk→∞ xT(k)Lx(k) = 0 and
limk→∞[f̃(x(k)) + v∗TLx(k)] = limk→∞ f̃(x(k)) = f̃(x∗). Note that L is positive semidefinite
with 0 as its simple eigenvalue under Assumption 3.2. It follows then limk→∞[xi(k)−xj(k)] = 0
and limk→∞ f̃(x(k)) = f̃(x∗) = f∗.

Due to the uniform boundedness of sequence {z(k)} by item 1), there must be a convergent
subsequence {zkm} of {zk}. We denote its limit by z = col(x, v). Then, it should satisfy
Lx = 0 and f̃(x) = limm→∞ f̃(xkm) = f∗ by item 2). In other words, x is an optimal solution
to (2). By Assumption 3.2, one can conclude that there exists some x ∈ R such that x = 1Nx.
Note that f(x) = f̃(x) = f∗, i.e., x is an exact optimal solution to the problem (1).

If X ∗ = {x∗} holds, all convergent subsequences of {x(k)} have the same limit x∗. This
combined with the boundedness of {z(k)} implies item 4) and completes the proof.

Remark 4.5 This theorem specifies a nontrivial case when our distributed optimization
problem (1) can be exactly solved even using only inexact subgradients information of the local
objective functions. This observation is consistent with the centralized results in [6]. Compared
with similar primal-dual domain results in [11, 17, 20, 23, 25, 28], this algorithm further allows
us to consider nonsmooth objective functions with only approximate subgradients.

It is known that normalization might improve the transient performance of the algorithms
to avoid overshoots at the starting phase. However, conventional normalized techniques often
involve some global information and can not be directly implemented in distributed settings.
We here present a novel componentwise normalized version of the algorithm (4) as follows:

xi(k + 1) = PXi

[

xi(k) − αk

max{c, δik,D} (gi(k) + x̂i(k) + v̂i(k))
]

,

vi(k + 1) = vi(k) +
αk

max{c, δik,D} x̂i(k), (16)

δik, m =

⎧
⎨

⎩

‖T i
εk

(z(k))‖, when m = 1,

max
j∈Ni

{δik, m−1, δjk, m−1}, when 2 ≤ m ≤ D,
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where integer D ≥ D(G) + 1 with D(G) the diameter of graph G and c > 0 is any given
constant. Since D(G) or an upper bound can be computed by distributed rules[29], this normal-
ized algorithm is implementable in a fully distributed manner by embedding a max-consensus
subiteration.

Here is a corollary to state that the normalized algorithm (16) retains all the established
properties in Theorem 4.4.

Corollary 4.6 Suppose Assumptions 3.1–3.2 hold. Choose the same parameters satisfying
condition (13). Then, along the trajectory of the algorithm (16), the sequence {z(k)} retains
all the established properties in Theorem 4.4.

1) The sequence {‖z(k + 1) − z∗‖} converges;
2) The estimates x1(k), · · · , xN (k) reach an optimal consensus in the sense that limk→∞

[xi(k) − xj(k)] = 0 and limk→∞ f̃(x(k)) = f̃(x∗) = f∗;
3) {z(k)} has at least one cluster point z = col(x, v) such that x = 1x∗ with x∗ being an

optimal solution to the problem (1).
4) If the optimal solution to the problem (1) is unique, i.e., X ∗ = {x∗}, then limk→∞ xi(k) =

x∗ for each i ∈ N .

Proof The proof is similar with that of Theorem 4.4. First, we recall Theorem 4.1 in [30]
and conclude that all agents will get max{c, maxi∈N ‖T i

εk
(z(k))‖} after the subiteration. Thus,

we only have to consider the following system:

xi(k + 1) = PXi [xi(k) − αkγk(gi(k) + x̂i(k) + v̂i(k))],

vi(k + 1) = vi(k) + αkγkx̂i(k)

with γk = 1
max{c, maxi∈N ‖T i

εk
(z(k))‖} . For this new system, we can establish a similar inequality

as (7) for ‖z(k) − z∗‖:
‖z(k + 1) − z∗‖2 ≤ ‖z(k) − z∗‖2 − 2αkγk(z(k) − z∗)TTεk

(z(k)) + α2
kγ2

k‖Tεk
(z(k))‖2.

Note that γ2
k‖Tεk

(z(k))‖2 ≤ N and 0 ≤ γk ≤ 1
c . Recalling the fact (9) and Δ(x(k)) ≥ 0, one

can obtain

‖z(k + 1) − z∗‖2 ≤ ‖z(k) − z∗‖2 − 2αkγkΔ(x(k)) +
2N

c
αkεk + Nα2

k.

According to Lemma 5.31 in [27], we can conclude the convergence of {‖z(k + 1) − z∗‖} and
∑∞

k=1 αkγkΔ(x(k)) < ∞. Then, {‖z(k)‖} is uniformly bounded, which implies that there must
be small enough constant C4 > 0 such that γk ≥ C4 > 0. We use Proposition 2 in [15] again
and obtain that limk→∞ Δ(x(k)) = 0. Then, items 3) and 4) can be easily verified following a
similar procedure as in Theorem 4.4. The proof is thus completed.

Remark 4.7 Compared with the conventional normalized step sizes in [22, 31], the pro-
posed componentwise normalized step size can be taken as their distributed extension and the
iterative sequence generated by (16) might have a better transient behavior than that gener-
ated by (4). Interestingly, the widely used subgradient boundedness assumption (i.e., Assump-
tion 4.1) is also removed as a byproduct, which might be favorable in distributed scenarios.
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5 Simulation

In this section, we consider an LASSO (least absolute shrinkage and selection operator)
regression problem to verify the effectiveness of our algorithms:

min
x∈X

f(x) =
1
2

N∑

i=1

‖x − pi‖2 + λN‖x‖1,

where λN > 0 is the regularization parameter, pi is an estimate only known by agent i, and X

is the constrained set. Letting fi(x) = 1
2‖x − pi‖2 + λ‖x‖1 and Xi = X , we can put it into a

form of the problem (1). Distributed subgradient algorithms have been developed to solve this
problem when ∂fi is available, e.g., [13]. Although ∂fi and ∂εfi can be easily calculated, we use
this example to conceptually show the effectiveness of our algorithm only using its ε-subgradient
instead of the exact one. In fact, according to the definition of ε-subdifferential, we can obtain

∂εfi(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[

x − pi − λ, x − pi − λ − λε

x

]

, for x < −ε

2
,

[x − pi − λ, x − pi + λ], for x ∈
[

− ε

2
,
ε

2

]

,
[

x − pi + λ − λε

x
, x − pi + λ

]

, for x >
ε

2
.

For simulations, we set N = 10, pi = 2i, and λ = 0.1. The communication graph is given
as Figure 1 with unity weights. We assume this problem has heterogeneous local constraints
specified by Xi = [−20 + i, 15 − i] with i = 1, 2, · · · , 10. In this case, X �

⋂N
i=1 Xi = [−10, 5]

and the constrained minimizer to our problem is x∗ = 5. Then, Assumptions 3.1–3.2 can be
verified. In the simulations, we choose x − pi − λ − λε

x , x − pi + λ, and x − pi + λ − λε
x as the

ε-subgradient at x for the three different conditions x < − ε
2 , − ε

2 ≤ x ≤ ε
2 , and x > ε

2 . To ensure
the condition (13), we choose αk = εk = 3

k+1 . According to Theorem 4.4 and Corollary 4.6, the
above problem can be solved by our proposed distributed primal-dual ε-subgradient method
(PDεSM) (4) and the normalized primal-dual ε-subgradient method (NPDεSM) (16).

1

2

3 4

567

8

9

10

Figure 1 Communication graph G in our example
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Simulation results with x(1) = col(1, 0, 5, −1, 3, 2, 6, −2, −3, −4) and c = 0.1 for (4)
and (16) are shown in Figures 2–3, where all agents’ primal variables are observed to converge
to the global optimal solution x∗ = 5 while the dual variables are bounded and converge to some
finite constants. This verifies the effectiveness of our algorithms. Comparing the performance of
the two algorithms, one can find that although the normalized step size in (16) might slow down
the convergence speed, the resultant transient performance of the primal and dual variables
has been much improved with less and weaker oscillations. For a clear comparison, we let
e(k) = ‖x(k)−110x∗‖

‖x(1)−110x∗‖ be the residential error of our algorithms. The profiles of e(k) in both
algorithms are shown in Figure 4. From this, we can also confirm the improvement of transient
performance by the proposed componentwise normalized step size.
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Figure 2 Profiles of primal and dual variables in Algorithm (4)
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Figure 3 Profiles of primal and dual variables in Algorithm (16)
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Figure 4 Profiles of residential errors in Algorithms (4) and (16)

6 Conclusion

In this paper, we have attempted to solve a distributed constrained optimization problem
with inexact subgradient information of local objective functions. We have developed a pro-
jected primal-dual dynamics using only ε-subgradients and discussed its convergence properties.
In particular, we have shown the exact solvability of this problem if the accumulated error intro-
duced by subgradient inexactness is not too large. We have also presented a novel distributed
normalized step size to improve the transient performance of our algorithms.

Note that the presented method is a conceptual framework to handle the inexact subgradient
issue. It may be difficult to be implemented except that the objective functions have certain
amenable structure, for example quadratic or piecewise linear. How to develop implementable
and efficient forms of the method for more general functions deserves further investigation.
Another interesting topic is to extend this work to more general communication graphs.
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