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Abstract
The distributed optimal output consensus problem for high-order multi-agent
systems has been studied recently. In this article, we further focus on the same
problem for high-order multi-agent systems subject to parametric uncertainties
and aim at distributed robust controllers by measurement output feedback. We
first develop a dynamic compensator to estimate the expected optimal consen-
sus point and convert the problem into several decentralized robust tracking
problems. Then, by combining the integral control technique and dirty deriva-
tive observer technique, we constructively propose a distributed output feedback
integral controller to solve this problem under a mild graph connectivity condi-
tion.
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1 INTRODUCTION

Consensus problem has been studied for decades with many applications in different areas including information fusion
in sensor networks, formation control of multiple robotics, resource allocation in power systems and so on. Basically,
consensus indicates that agents will agree on a common value regarding a certain quantity of interest through repeatedly
communicating with each other according to a prescribed communication pattern. In some practical applications,1-6 we
may expect the consensus point to enjoy an extra optimality besides this elementary requirement.

Recently, optimal consensus has attracted many researchers from different fields.6-9 Typically, we suppose each agent
is equipped with a convex cost function and try to construct distributed rules such that all agents reach a consensus about
the optimal solution minimizing an aggregated cost function defined as the sum of their own cost functions. Various
effective algorithms have been delivered in the literature from the mathematical programming viewpoint to solve this
problem.10-15

Along with the above results for single-integrator agents, optimal (output) consensus for multi-agent systems of
high-order dynamics has also been paid attention to. In fact, engineered multi-agent systems are hardly modeled by single
integrators and often with high-order physical dynamics, for example, the robotics in radio source seeking problems.16

Note that directly using the above algorithms might fail to ensure an optimal consensus for these high-order multi-agent
systems. Therefore, it is crucial to design effective protocols for agents having non-integrator dynamics to complete the
optimal output consensus goal. In fact, some interesting attempts have been made for both second and high-order linear
agents in the literature.17-21 However, most of these protocols are derived based on the knowledge of exact system matrices
of the agents.
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In many practical problems, the system matrices of each agent might be only known with measurement and modeling
errors or even unavailable. This leads us to further study the solvability of optimal output consensus when multi-agent
systems are high-order with uncertain parameters. Regarding the global consensus requirement for agents of nontriv-
ial dynamics and also uncertain parameters, achieving an optimal consensus can be very difficult. In fact, the previous
controllers in existing works17,18,20,21 can not be used any more in these circumstances and the related optimal out-
put consensus problem should be resolved in a more aggressive manner to admit uncertain parameters in system
matrices.

To handle the parametric uncertainties, there are at least two standard strategies in the literature, that is, adaptive
control policy with a dynamic compensator and robust control policy assuming these parameters are bounded. Both
strategies have been utilized to tackle the considered optimal consensus problem for several classes of multi-agent systems
having uncertain parameters.22-26 However, most existing results require the full state of each agent except the work for
relative-degree-one agents.22 Although this work has been extended to the case when agents are in normal form, it still
requires the partial states for feedback.24 Note that the state information may not be available in practice due to physical
constraints and high measurement costs.27-30 Thus, the fundamental problem is how to constructively develop robust
output feedback controllers for the uncertain high-order agents such that the expected optimal consensus can be reached
irrespective of parametric uncertainties.

In this article, we focus on the optimal output consensus problem for multi-agent systems having general linear
dynamics with uncertain parameters. Moreover, we assume that these uncertain parameters are contained in a known
compact set. Our main goal is to seek distributed robust output feedback controllers for these agents to reach an optimal
output consensus under weight-balanced directed graphs. Different from existing optimal consensus designs, we have to
develop a fixed-gain output feedback controller such that an optimal consensus is robustly achieved over these parame-
terized linear agents, which is certainly much more challenging than conventional optimal consensus results for known
linear agents by state feedback. To our knowledge, such a robust optimal output consensus problem under the same
conditions has not been addressed yet and its solvability is still unclear.

Based on the aforementioned observations, we summarize the contributions of this article as follows.

• First, we formulate and solve a robust optimal consensus problem for uncertain linear multi-agent systems. Different
from many existing optimal consensus results, we require the optimal consensus to be achieved irrespective of paramet-
ric uncertainties, which is definitely more challenging. To solve the problem, we develop a novel distributed controller
for the agents by integral control technique. Thus, our design has removed the requirement of a prior knowledge of
the agent’s system matrices and thus significantly extended some existing results18-21 on this topic to a larger class of
uncertain high-order agents.

• Second, we solve the optimal output consensus problem for this class of uncertain multi-agent systems only using the
measurement output information. Compared with the state/output feedback protocols in existing works,17-21,23 this
work takes both parametric uncertainties and output feedback issues into consideration. Novel distributed controllers
are constructively developed by combining the integral control technique and dirty derivative high-gain observer
technique, which may save measurement cost and communication resource.

• Third, by taking some special quadratic cost functions for the agents, we provide an alternative way to reach an aver-
age consensus for the agents. In contrast to some existing publications for integrator agents,31,32 the average output
consensus problem can be solved in a robust manner for more general high-order agents by only measurement output
feedback.

The rest of this article is organized as follows. We first present some preliminaries and the problem statement in
Sections 2 and 3. Then we detail the main results in Section 4 with proofs. Numerical examples are provided to verify the
effectiveness of our designs in Section 5 with some closing remarks in Section 6.

2 PRELIMINARIES

In this article, RN stands for the N-dimensional Euclidean space. Let col(a1, … , aN) = [a1 … aN]⊤ and IN be
the identity matrix of size N. Let ||a|| be the Euclidean norm of a vector a and ||A|| the spectral norm of a
matrix A.
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2.1 Graph theory

A weighted directed graph (digraph) is given by  = ( ,  , ) with node set  , edge set  ∈  × , and weighted
adjacency matrix . We avoid self-loops in the graph and define aii = 0 and aij ≥ 0 if there exists an edge (j, i) ∈  . We
say this digraph is strongly connected if there is a directed path for any two vertices.

Define the in-degree and out-degree of node i as din
i =

∑N
j=1aij and dout

i =
∑N

j=1aji. A digraph is weight-balanced if the
in-degree and out-degree are equal for any node. The Laplacian of  is given as L ≜ Din − with Din = diag(din

1 , … , din
N ).

For a weight-balanced and strongly connected digraph, the eigenvalues of matrix Sym(L) ≜ L+L⊤

2
are positive real numbers

and can be ordered as 0 = 𝜆1 < 𝜆2 ≤ · · · ≤ 𝜆N . More details can be found in the work of Godsil and Royle.33

2.2 Convex analysis

Consider a function f ∶ Rm → R. We say it is convex if for any 0 ≤ a ≤ 1 and 𝜁1, 𝜁2 ∈ Rm, we have f (a𝜁1 + (1 − a)𝜁2) ≤
af (𝜁1) + (1 − a)f (𝜁2). When this function f is differentiable, we denote by ∇f its gradient. It can be verified that for a dif-
ferentiable function f , it is convex if and only if for ∀𝜁1, 𝜁2 ∈ Rm, we have f (𝜁1) − f (𝜁2) ≥ ∇f (𝜁2)⊤(𝜁1 − 𝜁2). If this inequality
holds strictly except the trivial case, we say f is strictly convex. A function f is 𝜔-strongly convex (𝜔 > 0) over Rm if
(∇f (𝜁1) − ∇f (𝜁2))⊤(𝜁1 − 𝜁2) ≥ 𝜔||𝜁1 − 𝜁2||2 holds for any 𝜁1, 𝜁2 ∈ Rm. Consider a function f ∶ Rm → Rm. If ||f(𝜁1) − f(𝜁2)|| ≤
𝜗||𝜁1 − 𝜁2|| holds for any 𝜁1, 𝜁2 ∈ Rm, we say it is 𝜗-Lipschitz . Please refer to the monograph by Bertsekas et al.34 for more
details if interested.

3 PROBLEM STATEMENT

Consider an N-agent system of the following form:

ẋi = A(w)xi + B(w)ui,

yi = C(w)xi, i = 1, … , N (1)

with state variable xi ∈ Rn, input variable ui ∈ R, and output variable yi ∈ R. Here A(w) ∈ Rn×n, B(w) ∈ Rn×1, and
C(w) ∈ R1×n are the system matrices subject to an uncertain parameter vector w ∈  ⊂ Rnw . Without loss of generality,
the nominal value is set to be w = 0. We also assume w can be any vector ranging over a compact set  containing the
origin.

We equip each agent i with a convex cost function fi ∶ R → R. Let f (y) =
∑N

i=1fi(y) be the global cost function with
y the decision variable. This article aims at an output consensus for these agents about the minimal solution of f in a
distributed manner irrespective of any w ∈  .

We use a digraph  = ( ,  , ) to represent the communication network for these agents with  = {1, … , N}.
If agent i can receive the information from agent j, then there is a weighted edge (j, i) ∈  in  with aij > 0. Denote by
i = {j|(j, i) ∈ } the neighbor set of node i for each node i ∈  .

Regarding the multi-agent system (1) with any given compact set  , cost function fi(⋅), and a digraph , the robust
distributed optimization output consensus problem or simply robust DOOC problem is to derive a measurement output
feedback controller ui using agent i’s local information such that, for any w ∈  , the agent trajectories from any ini-
tial points are well-defined for any t ≥ 0 and the agent outputs achieve an optimal output consensus in the sense that
limt→+∞ ||yi(t) − y∗|| = 0 with y∗ being an optimal solution to the following global optimization problem

min
y∈R

f (y) =
N∑

i=1
fi(y) (2)

Remark 1. This robust DOOC formulation extends the existing optimal consensus results in the literature to the case when
agents are of high-order dynamics possessing parametric uncertainties. Furthermore, we aim at distributed controllers
by output feedback instead of the widely used state feedback to handle the optimality and robustness issues. Thus, our
problem is more general and more challenging than the well-studied (optimal) consensus for integrators.18,19,21,32
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In a special case, we can choose a constant ci > 0 and let fi(y) = ci(y − yi(0))2 for each i ∈  . Then the optimal con-
sensus point will be a weighted average of agents’ initial outputs. Hence, the formulation will assist us in resolving the
weighted average consensus problem for uncertain agent (1) by output feedback.

As optimal consensus for non-integrator agents is nontrivial when the communication graph is directed, the lim-
ited measurements and parametric uncertainties bring us extra technical difficulties. In next section, we will adopt the
embedded control approach proposed in Tang et al.21 and extend it to a robust version to tackle these issues.

4 MAIN RESULTS

We will first convert the optimal output consensus problem into some decentralized tracking problems with the help of
an optimal signal generator to estimate the expected global optimal point, and then complete the whole design by solving
the resultant robust tracking problems by output feedback controllers.

To ensure the solvability of the robust DOOC problem for agent (1), we make the following assumptions.

Assumption 1. For each i ∈  , there exist constants li, li > 0 such that fi is li-strongly convex and ∇fi is li-Lipschitz.

Assumption 2. The digraph  is strongly connected and weight-balanced.

Assumption 3. Agent (1) has a well-defined relative degree m and is minimum-phase for all w ∈  .

These assumptions are very standard and have been widely used in the literature.11,21,22,28 Under Assumption 1, the
optimization problem (2) must have a unique optimal solution. We denote it by y∗ and assume it is finite as usual.11,17

Under Assumption 2, each agent’s information can finally reach another agent in this network. Assumption 3 ensures
that the high-frequency gain b1(w) = C(w)Am−1B(w) does not vanish for any w ∈  . We assume that b1(w) > 0 for all
w ∈  without loss of generality. This assumption can characterize a large class of uncertain high-order agents, including
integrators and exactly known linear systems18,20,21,31,32 as some special cases.

4.1 Optimal signal generation

Following the embedded design procedure, we will first consider a single-integrator multi-agent system specified by żi =
𝜇i with the function fi and digraph . After solving the optimal consensus for them, we will convert our optimal output
consensus problem into several robust output tracking problems for agent (1) with reference zi.

Since the information graph  is directed, its Laplacian might be asymmetric. Thus, the optimal signal
generator proposed in Tang et al.21 fails to achieve our goal without the information of L⊤. To tackle this
issue, the following optimal signal generator has been developed24 for problem (2) under weighted-balanced
graphs:

żi = −𝛼∇fi(zi) − 𝛽

N∑
j=1

aij(zi − zj) +
N∑

j=1
aij(vi − vj)

v̇i = 𝛼𝛽

N∑
j=1

aij(zi − zj) (3)

with some chosen parameters 𝛼, 𝛽 > 0. Its effectiveness has already been established in the work of Tang et al..24 Here
we denote l = mini{li}, l = maxi{li} and present a sketch of proof for a complete design.

Lemma 1. Under Assumptions 1–2, we let

𝛼 ≥ max

{
1, 1

l
,

2l
2

l𝜆2

}
, 𝛽 ≥ max

{
1, 1

𝜆2
,

6𝛼2𝜆2
N

𝜆2
2

}
(4)

Then, for any zi(0) and vi(0), the trajectory zi(t) under the algorithm (3) will exponentially converge to the global optimal
point y∗ as t → ∞ for any i ∈  , that is, for all t > 0, ||zi(t) − y∗|| ≤ c1e−c2t holds for two constants c1, c2 > 0.
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Proof. Letting z = col(z1, … , zN) and v = col(v1, … , vN), we can put (3) into a compact form

ż = −𝛼∇f̃ (z) − 𝛽Lz − Lv, v̇ = 𝛼𝛽Lz (5)

where f̃ (z) ≜ ∑N
i=1fi(zi). It can be verified that f̃ (z) is l-strongly convex while its gradient ∇f̃ (r) is l-Lipschitz. Assuming

col(z⋆, v⋆) be any equilibrium point of system (5), one can easily verify z⋆ = 1N y⋆ under Assumptions 1–2.
Then, we let M1 = 1√

N
1N and M2 be the matrix satisfying M⊤

2 M1 = 0N−1, M⊤
2 M2 = IN−1 and M2M⊤

2 = IN − M1M⊤
1 . Set

z1 = M⊤
1 (z − z⋆), z2 = M⊤

2 (z − z⋆), and v2 = M⊤
2 [(v + 𝛼z) − (v⋆ + 𝛼z⋆)]. It follows that

ż1 = −𝛼M⊤
1 𝚷

ż2 = −𝛼M⊤
2 𝚷 − 𝛽MLz2 + 𝛼MLz2 − MLv2

v̇2 = −𝛼MLv2 + 𝛼2MLz2 − 𝛼2M⊤
2 𝚷 (6)

where 𝚷 ≜ ∇f̃ (z) − ∇f̃ (z⋆) and ML = M⊤
2 LM2. Choose a Lyapunov function candidate as Wo(z1, z2, v2) = 1

2
||z1||2 +

1
2
||z2||2 + 1

2𝛼3 ||v2||2. It is quadratic and positive definite. By a similar treatment as in Tang et al.,24 the derivative of Wo(t)
along the trajectory of (6) satisfies Ẇo ≤ − 1

2
Wo. According to theorem 4.10 in the work of Khalil,35 Wo(z1(t), z2(t), v2(t))

will exponentially converge to 0 as t goes to ∞. Since z − 1N y⋆ = M1z1 + M2z2, the proof is complete. ▪

This optimal signal generator is motivated by the primal-dual method solving a distributed optimization problem.11,36

Compared with the ones in Kia et al.11 and Zhang et al.,17 this algorithm is free of initialization via exchanging vi with
each other. With the generator (3), agent i will get an asymptotic estimate zi(t) of y∗. Thus, we are going to construct
effective output tracking controllers for each agent such that the local tracking error yi(t) − zi(t) asymptotically vanishes.
If done, by inserting (3) into the developed robust tracking controllers, we will have a distributed controller solving our
problem for agent (1).

When the parameter w is exactly known by us, the resultant output tracking problem for agent (1) can be readily
solved by some well-known stabilization-based techniques, for example, pole placement and linear quadratic regulation.37

However, these unknown parameters make the design of such stabilization-based controllers very tricky. To make it clear,
we recall proposition 9.1.1 in the work of Isidori38 and put agent (1) into a normal form by some coordinate transformation:

ẋ0
i = A0(w)xi0 + b0(w)yi

𝜉̇ir = 𝜉ir+1, r = 1,… , m − 1
𝜉̇im = A1(w)xi0 + A2(w)𝜉i + b1(w)ui

yi = 𝜉i1 (7)

where 𝜉 = col(𝜉i1, … , 𝜉im), 𝜉ir = y(r−1)
i for r = 1,… , m, and A0, A1, A2, b0, b1 are (possible unknown) constant matrices

with proper dimensions. The symbol y(r)i represents the rth derivative of yi(t) with respect to t. It can be found that the
pole-placement method in Zhang et al.17 and Tang et al.21 highly relies on the knowledge of matrices A1(w), A2(w), and
b1(w), which is prohibitive in our setting. Technically, we have to stabilize several parameterized matrices at the same time
by a fixed output feedback controller, which is certainly more difficult than the conventional pole placement problem for
known linear systems by state feedback.

Some adaptive and/or robust control policies have been utilized in the literature17,22-24 to deal with such an uncertain
parameter issue for an optimal output consensus. However, when facing agents of the form (1) (or equivalently, (7)), they
all require the agent’s full state information (or at least partial state information) and can not be directly implemented to
solve the formulated robust DOOC problem for the multi-agent system (1) when only measurement output information
is available for us.

To overcome these issues, we are going to explore the well-known integral control and high-gain observer techniques
to design robust tracking controllers for agent (7). In the sequel, we will first establish an important lemma to ensure
an optimal consensus by a partial state feedback control, and then extend it to an output feedback version to solve our
problem.
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4.2 Partial state feedback integral control

Suppose the variables yi, ẏi,…, y(m−1)
i are all known to us. We choose positive constants k1,…, km such that the polynomial

p(s) ≜ k1 + k2s + · · · + kmsm−1 + sm is Hurwitz. For simplicity, we can set

kj =
(

m
j − 1

)
𝜆

m−j−1
0 , j = 1, … , m (8)

with any given 𝜆0 > 0. Then the polynomial can be written as p(s) = (s + 𝜆0)m and is apparently Hurwitz.
To deal with the parametric uncertainties, we denote evi = yi − zi and introduce a compensator as the integral

term:

𝜉̇i0 = evi (9)

Then a distributed partial state feedback integral controller can be given for system (7) as follows:

ui = −𝜀
[

k1𝜉i0 + k2(yi − zi) + k3ẏi + · · · + kmy(m−2)
i + y(m−1)

i

]
𝜉̇i0 = yi − zi

żi = −𝛼∇fi(zi) − 𝛽

N∑
j=1

aij(zi − zj) +
N∑

j=1
aij(vi − vj)

v̇i = 𝛼𝛽

N∑
j=1

aij(zi − zj) (10)

with constants k1, … , km, 𝛼, 𝛽 chosen as above and gain parameter 𝜀 > 0 to be specified later.
To establish the effectiveness of our controller (10), we let E = diag(1, 0, … , 0) and U(w) =

−b−1
1 (w)[A1(w)A−1

0 (w)b0(w) + A2(w)E]. Then we introduce some new variables:

x0
i = xi0 + A−1

0 (w)b0(w)zi

𝜉i0 = 𝜉i0 +
U(w)zi

𝜀k1

𝜉i1 = evi, 𝜉ir = 𝜉ir, 𝜉i = col(𝜉i1, … , 𝜉im), r = 2,… ,m

𝜎i =
m∑

j=1
kj𝜉ij−1 + 𝜉im

𝜉ie = col(𝜉i0, … , 𝜉im−1)

By some standard mathematical manipulations, we can derive the following translated tracking error system for agent
(7) with an output reference zi(t):

ẋi0 = A0(w)xi0 + b0(w)𝜉i1 + Dx(w)żi

̇
𝜉ie = Ā0𝜉ie + b0𝜎i + D𝜉(w)żi

𝜎̇i = A1(w)xi0 + Ā2(w)𝜉ie + Ā3(w)𝜎i + D𝜎(w)żi + b1(w)[ui − U(w)zi] (11)

where matrices Ā0, b0, D𝜉 , Ā2, Ā3, Dx, D𝜎 are defined as follows.

Ā0 =

[
0m−1 Im−1

−k1 [−k2, … , −km]

]
, b̄0 =

[
0m−1

1

]
, D𝜉(w) =

⎡⎢⎢⎢⎣
U(w)
𝜀k1

−1
0m−2

⎤⎥⎥⎥⎦
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Ā2(w) = A2(w)Ā0 − km

[
k1, k2 −

k1

km
, … , km − km−1

km

]
, Ā3(w) = A2(w)b̄0 + km

Dx(w) = A−1
0 (w)b0(w), D𝜎(w) = U(w)

𝜀
− k2

Substituting the controller (10) into system (7) gives:

ẋi0 = A0(w)xi0 + b0(w)𝜉i1 + Dx(w)żi

̇
𝜉ie = Ā0𝜉ie + b0𝜎i + D𝜉(w)żi

𝜎̇i = A1(w)xi0 + Ā2(w)𝜉ie + [Ā3(w) − 𝜀b1(w)]𝜎i + D𝜎(w)żi

żi = −𝛼∇fi(zi) − 𝛽

N∑
j=1

aij(zi − zj) +
N∑

j=1
aij(vi − vj)

v̇i = 𝛼𝛽

N∑
j=1

aij(zi − zj) (12)

Denote xi ≜ col(xi0, 𝜉ie, 𝜎i). We give a lemma to ensure the solvability of our optimal output consensus problem
by (10).

Lemma 2. Suppose Assumptions 1–3 hold. The robust DOOC problem for multi-agent system (1) with (2) can be solved by
the partial state feedback controller (10) with some chosen constants k1, … , km, 𝛼, 𝛽, and 𝜀.

Proof. With k1, … , km, 𝛼, 𝛽 chosen as above, we only have to determine an 𝜀 such that the expected optimal consensus
is achieved for agent (7) under (10).

The following proof consists of two steps.
Step 1: we show that the xi-subsystem of (12) is input-to-state stable with respect to input żi for a large enough con-

stant 𝜀. Since matrices A0(w) and Ā0 are Hurwitz by the choices of k1, … , km under Assumption 3, there must exist
two positive definite matrices P0 and P1 uniquely for any fixed w ∈  such that A⊤

0 (w)P0(w) + P0(w)A0(w) = −2In−m and
A⊤

1 P1 + P1A1 = −2Im are both satisfied.
Let Vi(xi) = x⊤i0P0(w)xi0 + 𝜖𝜉

⊤

ieP1𝜉ie + 𝜎2
i with 𝜖 > 0 to be given later. We take its time derivative along the trajectory of

(12) and obtain that

V̇ i = 2x⊤i0P0(w)[A0(w)xi0 + b0(w)𝜉i1 + Dx(w)żi] + 2𝜖𝜉
⊤

ieP1[Ā0𝜉ie + b0𝜎i + D𝜉(w)żi] + 2𝜎iA1(w)xi0

+ 2𝜎i{Ā2(w)𝜉ie + [Ā3(w) − 𝜀b1(w)]𝜎i + D𝜎(w)żi}

= −2x⊤i0xi0 + 2x⊤i0P0(w)b0(w)𝜉i1 + 2x⊤i0P0(w)Dx(w)żi − 2𝜖𝜉
⊤

ie𝜉ie + 2𝜖𝜉
⊤

ieP1b0𝜎i + 2𝜖𝜉
⊤

ieP1D𝜉(w)żi + 2𝜎iA1(w)xi0

+ 2[Ā3(w) − 𝜀b1(w)]𝜎2
i + 2𝜎iĀ2(w)𝜉ie + 2𝜎iD𝜎(w)żi

Using Young’s inequality to dominate the cross terms at the righthand side, we have that

V̇ i ≤ −||xi0||2 + 2||P0(w)b0(w)||2||𝜉i1||2 + 2||P0(w)Dx(w)||2||żi||2 − 𝜖||𝜉ie||2 + 2𝜖||P1b0||2||𝜎i||2 + 2𝜖||P1D𝜉(w)||2||żi||2
+ 2[Ā3(w) − 𝜀b1(w)]𝜎2

i + 2||A1(w)||2𝜎2
i + 1

2
||xi0||2 + 2

𝜖
||Ā2(w)||2𝜎2

i + 𝜖

2
||𝜉ie||2 + 𝜎2

i + ||D𝜎(w)||2||żi||2
≤ −1

2
||xi0||2 − (

𝜖

2
− 2||P0(w)b0(w)||2) ||𝜉ie||2 − 2[𝜀b1(w) − 𝜖||P1b0||2 − Ξi𝜎(w) − 1]𝜎2

i + Ξiz(w)||żi||2
where Ξi𝜎(w) ≜ Ā3(w) − 𝜖||P1b0||2 − ||A1(w)||2 − 1

𝜖
||Ā2(w)||2 and Ξiz(w) ≜ 2[||P0(w)Dx(w)||2 + 𝜖||P1D𝜉(w)||2 + ||D𝜎(w)||2].

Choosing

𝜖 ≥ 4 max
w∈ {||P0(w)b0(w)||2} + 1, 𝜀 ≥ maxw∈ Ξi𝜎(w) + 𝜖||P1b0||2 + 2

minw∈W{b1(w)}
(13)
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gives V̇ i ≤ − 1
2
||xi0||2 − ||𝜉ie||2 − 2𝜎2

i + Ξiz(w)||żi||2. This implies the following for some constants c1, c2 > 0 that

V̇ i ≤ −c1Vi + c2||żi||2 (14)

Step 2: we show the solvability of our robust DOOC problem using inequality (14). Under Assumption 1, the function żi
is globally Lipschitz at col(z, v). At the same time, zi(t) and żi(t) exponentially converge to y∗ and 0 as t → ∞ by Lemma 1,
respectively. Then we can solve the differential inequality (14) and obtain

Vi(t) ≤ e−c1(t−t0)Vi(t0) + c2∫
t

t0

e−c1(t−𝜏)||żi(𝜏)||2d𝜏

From this, one concludes that Vi(t), xi(t), and 𝜉i1(t) all exponentially converge to 0 as t → ∞. Using the fact that|yi − y∗| ≤ |yi − zi| + |zi − y∗|, we obtain the exponential convergence of yi(t) towards y∗ as t → ∞. The proof is thus
complete. ▪

It is interesting to point out that the proposed controller (10) requires less information than the one used in Tang
et al.21 to solve the DOOC problem. In fact, we take the zero dynamics x0

i as dynamic uncertainties and compensate them
by high-gain controls here. In this way, the controller (10) has a lower order than those proposed in Tang et al..21

Next, motivated by the observer-based designs in previous works,28-30 we move on to develop an output feedback
controller extending the partial-state feedback (10) by high-gain dirty observers and thus complete the whole robust
DOOC design.

4.3 Output feedback integral control

To this end, we propose a dirty derivative observer to estimate these unknown derivatives as in the work of Teel et al.:27

𝜒̇ ir = 𝜒ir+1 − lr(𝜒i1 − yi), r = 1,… , m − 1
𝜒̇ im = −lm(𝜒i1 − yi) (15)

Here 𝜒i ≜ col(𝜒i1, … , 𝜒im) and lr = 𝛾 rkm−r+1 with a constant 𝛾 > 0 to be specified later.
Substituting these estimations into the partial-state feedback control (10), we present an output feedback control to

solve our robust DOOC problem as follows.

ui = −𝜀[k1𝜉i0 + k2(yi − zi) + k3𝜒i2 + · · · + km𝜒im−1 + 𝜒im]
𝜉̇i0 = yi − zi

𝜒̇ ir = 𝜒ir+1 − lr(𝜒i1 − yi), r = 1,… , m − 1
𝜒̇ im = −lm(𝜒i1 − yi)

żi = −𝛼∇fi(zi) − 𝛽

N∑
j=1

aij(zi − zj) +
N∑

j=1
aij(vi − vj)

v̇i = 𝛼𝛽

N∑
j=1

aij(zi − zj) (16)

where constants k1, … , km, 𝛼, 𝛽, and 𝜀 are chosen as in Lemma 2. This controller for agent i only depends its local
information and thus is distributed.

Here is our main theorem to solve the optimal output consensus problem for uncertain multi-agent system (1) by
distributed output feedback controllers.

Theorem 1. Suppose Assumptions 1–3 hold. The robust DOOC problem for multi-agent system (1) with (2) can be solved
by a distributed output feedback controller of the form (16) with some chosen constants k1, … , km, 𝛼, 𝛽, 𝜀, and 𝛾 .
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Proof. To complete the proof, we seek for a similar inequality as (14) for some translated systems under (16).
Let 𝜒 ir = 𝜒ir − 𝜉ir for r = 1, … , m. The error system associated with the dirty observer (15) is:

𝜒̇ ir = 𝜒 ir+1 − lr𝜒 i1, r = 1,… , m − 1

𝜒̇ im = −lm𝜒 i1 − A1(w)xi0 − A2(w)𝜉i − b1(w)ui

Substituting (16) into this error system gives

𝜒̇ ir = 𝜒 ir+1 − lr𝜒 i1, r = 1,… , m − 1

𝜒̇ im = −lm𝜒 i1 − Δi − b1(w)ūi

where Δi ≜ A1(w)xi0 + A2(w)𝜉i − 𝜀b1(w)𝜎i and ūi ≜ −𝜀(k3𝜒 i2 +…+ km𝜒 im−1 + 𝜒 im).
Let 𝜒̂ ir = 𝛾m−r𝜒 ir for r = 1, … , m. It follows that

̇̂𝜒 ir = 𝛾(−km−r+1𝜒 i1 + 𝜒̂ ir+1), r = 1,… , m − 1
̇̂𝜒 im = −𝛾k1𝜒 i1 − [Δi + b1(w)ūi]

It has a compact form as follows.

̇̂𝜒 i = 𝛾A𝜒 𝜒̂ i − b𝜒 [Δi + b1(w)ūi]

where , b𝜒 =
[

0m−1
1

]
with p𝜒 = col(km, … , k2).

Recalling the translated system (11), we can use similar mathematical manipulations and obtain the tracking
subsystem under controller (16) as follows.

ẋi0 = A0(w)xi0 + b0(w)𝜉i1 + Dx(w)żi

̇
𝜉ie = Ā0𝜉ie + b0𝜎i + D𝜉(w)żi

𝜎̇i = A1xi0 + Ā2𝜉ie + [Ā3 − 𝜀b1(w)]𝜎i + b1(w)ūi + D𝜎(w)żi

̇̂𝜒 i = 𝛾A𝜒 𝜒̂ i − 𝛾1−mb𝜒 [Δi + b1(w)ūi] (17)

From the choice of ki, the equation A⊤
𝜒P𝜒 + P𝜒A𝜒 = −2Im has a unique positive definite solution P𝜒 . Let Wi(xi, 𝜒̂ i) =

Vi(xi) + 𝜒̂⊤
i P𝜒 𝜒̂ i with Vi defined as before in the proof of Lemma 2. Wi is quadratic and positive definite.

By setting k1, … , km, and 𝜀 as in Lemma 2, we have

V̇ i ≤ −1
2
||xi0||2 − ||𝜉ie||2 − 2𝜎2

i + 2𝜎ib1(w)ūi + Ξiz(w)||żi||2
≤ −1

2
||xi0||2 − ||𝜉ie||2 − 𝜎2

i + ||b1(w)||2||ūi||2 + Ξiz(w)||żi||2
with Vi defined as in the proof of Lemma 2.

Recalling the compactness of set  , we can further determine some known constants ĉ1, ĉ2, ĉ3 > 0 such
that

V̇ i ≤ −ĉ1Vi + ĉ2||ūi||2 + ĉ3||żi||2
It follows then

Ẇ i = V̇ i + 2𝜒̂⊤
i P𝜒{𝛾A𝜒 𝜒̂ i − b𝜒 [Δi + b1(w)ūi]}

≤ −ĉ1Vi − 2𝛾||𝜒̂ i||2 − 2𝜒̂⊤
i P𝜒b𝜒 [Δi + b1(w)ūi] + ĉ2||ūi||2 + ĉ3||żi||2
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1 2 3 4

F I G U R E 1 Digraph  used in our examples

Next, we will estimate the above cross terms by Young’s inequality. From the expression of Δi, there must be a known
constant l1 > 0 such that ||Δi||2 ≤ l1V 2

i . Then

||2𝜒̂⊤
i P𝜒b𝜒Δi|| ≤ 2l1

ĉ1
||P𝜒b𝜒 ||2||𝜒̂ i||2 + ĉ1

2l1
||Δi||2

≤ 2l1

ĉ1
||P𝜒b𝜒 ||2||𝜒̂ i||2 + ĉ1

2
V 2

i

Note that ūi = −𝜀(k3𝛾
2−m𝜒̂ i2 + · · · + km𝛾𝜒̂ im−1 + 𝜒̂ im). For any 𝛾 > 1, there must be a constant l2 > 0 satisfying ||ūi||2 ≤

l2||𝜒̂ i||2. By Young’s inequality, one can determine a known constant l3 > 0 such that

||2𝜒̂⊤
i P𝜒b𝜒b1(w)ūi|| ≤ ||ūi||2 + ||P𝜒b𝜒b1(w)||2||𝜒̂ i||2 ≤ l3||𝜒̂ i||2

Putting these inequalities together, we have

Ẇ i ≤ −ĉ1Vi − 2𝛾||𝜒̂ i||2 + 2l1

ĉ1
||P𝜒b𝜒 ||2||𝜒̂ i||2 + ĉ1

2
V 2

i + l3||𝜒̂ i||2 + ĉ2||ūi||2 + ĉ3||żi||2
≤ − ĉ1

2
Vi − (2𝛾 − ĉ2l2 −

2l1

ĉ1
||P𝜒b𝜒 ||2 − l3)||𝜒̂2||2 + ĉ3||żi||2

Fixing the parameter 𝛾 to satisfy

𝛾 ≥ max
{

1, 3ĉ2l2,
6l1

ĉ1
||P𝜒b𝜒 ||2, 3l3

}
(18)

one can obtain

Ẇ i ≤ − ĉ1

2
Vi − ||𝜒̂ i||2 + ĉ3||żi||2

With this inequality, we can follow the same procedure as in the proof of (2) and conclude the solvability of the optimal
output consensus problem by the output feedback controller (16) under theorem conditions. ▪

Remark 2. Compared with some similar optimal consensus results,17,18,20,21 this theorem removes the requirement
of the exact system matrices. Thanks to the output feedback integral controller (16), the optimal output consen-
sus problem for these high-order agents can be solved in a robust fashion to admit arbitrarily large uncertain
parameters.

Remark 3. The developed controller (16) involves a number of control parameters. To determine these parameters, we
are suggested to first choose 𝛼, 𝛽 according to (4), and then set k1, … , km, and 𝜀 according to (8) and (13). After that, we
can increase 𝛾 to satisfy condition (18).

5 SIMULATION

In this section, we provide two examples to illustrate the effectiveness of our design.
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F I G U R E 2 Estimates of the global optimal solution y∗ in Example 1

Example 1. Consider a multi-agent system composed of four identical vertical takeoff and landing (VTOL) aircrafts39

tasked to reach a consensus on the vertical position. The communication graph is depicted as Figure 1 with all the edge
weights as 1. The motion of the aircraft on the lateral-vertical plane can be modeled by the equations

Mp̈i = − sin(𝜃i)Ti + 2 cos(𝜃i) sin(𝛼)Fi

Mq̈i = cos(𝜃i)Ti + 2 sin(𝜃i) cos(𝛼)Fi − gM
J𝜃̈i = 2l cos(𝛼)Fi

where pi, qi, and 𝜃i denote, respectively, the horizontal and vertical position of the center of mass of the aircraft and the
roll angle of the aircraft with respect to the horizon. M denotes the mass of the aircraft and J the moment of inertia about
the center of mass. Moreover, Ti is the thrust directed out from the bottom of the aircraft and Fi is the equal force acting
at the wingtips tilted by some fixed angle 𝛼 to the horizontal body axis. The constants l and g are the distance between
the wingtips and the gravitational acceleration. Since we are interested in a consensus on the vertical position, we neglect
the rolling motion (i.e., 𝜃i ≡ 0) and focus on the reduced vertical dynamics described by

q̈i =
1
M

Ti − g

The mass of the aircraft is assumed to have some constant variation satisfying 1
2
≤ M

M0
≤ 2 with a nominal mass

M0. To save energy, we require the consensus position to be the average of their initial positions Aver(z(0)) ≜
1
4

∑4
i=1zi(0) in order to minimize the aggregate distance from their starting point to this final position. Next, we show

that this task can be reformulated as an optimal output consensus problem for a group of uncertain agents of the
form (1).

Note that the agent dynamics can be rewritten as follows.

[
q̇i

q̈i

]
=

[
0 1
0 0

][
qi

q̇i

]
+
⎡⎢⎢⎣

0
(1 + w) 1

M0

⎤⎥⎥⎦Ti −

[
0
g

]
(19)
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F I G U R E 3 Profile of agent outputs under the controller (16) in Example 1

with w = M0
M

− 1 ∈ [− 1
2
, 1]. Letting xi = col(qi, q̇i), yi = zi, and ui = Ti, the agent is naturally of the form (1) with m = 2

but subject to an extra actuating disturbance due to the gravity. By assigning a local cost function fi(y) = ||y − zi(0)||2 to
each agent, the consensus task on the vertical position for these aircrafts is converted to the formulated DOOC problem
for agent (19) with a global cost function f (z) =

∑4
i=1||z − zi(0)||2. Since Assumption 2 can be confirmed with 𝜆2 = 1 and

𝜆4 = 2, this problem is readily solved by the controller (16) according to Theorem 1 if the external disturbance disappears.
It is interesting to point output that the designed integral controller (16) is robust enough to ensure the solvability of this
robust DOOC problem even with this external disturbance due to the gravity.

For simulations, we set zi(0) = 2 ∗ i − 1 and choose k1 = 1, k2 = 2, 𝛼 = 1, 𝛽 = 15, 𝜀 = 6, and 𝛾 = 10 for the con-
troller (16). Other initial conditions for the closed-loop system are (randomly) chosen. The performance of our proposed
optimal signal generator (3) is illustrated in Figure 2, where the estimate zi converges to the global optimal solution
y∗ = Aver(z(0)) = 4 quickly. The expected optimal output consensus for these agents can be observed in Figure 3, while
the control signals are bounded as reported in Figure 4. These observations confirm the effectiveness of our controllers
to solve the optimal consensus problem on the vertical position for these VTOL aircrafts.

Example 2. We further consider a four-agent system with the following system matrices and more complex cost
functions.

A(w) =
⎡⎢⎢⎢⎣
− 1 + w1 1 0
− 1 + w2 0 1

1 w3 1

⎤⎥⎥⎥⎦ , B(w) =
⎡⎢⎢⎢⎣

0
0

1 + w3

⎤⎥⎥⎥⎦ , C(w) =
[
0 1 + w4 0

]

Here parameters w1, … , w4 are supposed to be unknown but satisfy ||wi|| ≤ 0.5. Denote w ≜ col(w1, w2, w3, w4)
for short. We let  = [−0.5, 0.5] × [−0.5, 0.5] × [−0.5, 0.5] × [−0.5, 0.5] ⊂ R4. It can be verified that this agent has a
well-defined relative degree two and is minimum phase for all w ∈  .

The cost functions of agents are taken as

f1(y) =
1
2
(y − 8)2, f2(y) =

y2

160 ln(y2 + 2)
+ 1

2
(y − 5)2
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F I G U R E 4 Profile of control efforts under the output feedback controller (16) in Example 1
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f3(y) =
y2

40
√

y2 + 1
+ 1

2
y2, f4(y) =

1
2

ln
(

e−0.05y + e0.05y) + 1
2

y2.

We can verify Assumption 1 with li = 0.5, li = 1.5 for each i. The communication digraph is the same with Example
1. According to Theorem 1, the robust DOOC problem for these uncertain linear agents can be solved by a distributed
output feedback controller of the form (16).

In the simulation, we choose k1 = 1, k2 = 2, 𝛼 = 1, 𝛽 = 15, 𝜀 = 6, and 𝛾 = 10 for the controller (16). The initial con-
ditions for the closed-loop system are (randomly) chosen. The performance of our proposed optimal signal generator (3)
is illustrated in Figure 5. To make it more interesting, we use two different sets of system parameters. At first, vector
w is chosen as [0.4, 0.3, −0.2, −0.4]⊤ before t=25 s. Then we change it to be [0.1, −0.2, −0.3, 0.2]⊤. With the developed
control (16), we present the simulation results in Figures 6 and 7. An output consensus on y∗ = 3.24 for these agents is
reached even the parameter vector w changes. Meanwhile, the control signals are found to be bounded and converge to
each individual steady-state control effort quickly during these two different phases as reported in Figure 7. The simu-
lation results verify the effectiveness and robustness of our distributed output feedback optimal consensus controllers
against parametric uncertainties.

6 CONCLUSION

We have addressed a robust DOOC problem for a group of uncertain high-order multi-agent systems by measurement
output feedback. By inserting an applicable optimal signal generator to reproduce the global optimal point, we have devel-
oped a novel distributed output feedback integral controller to solve the problem irrespective of unknown parameters.
Future works will include extensions to the cases when this problem has output constraints with more general graphs
and external disturbances.
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