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Abstract
In this article, we investigate a constrained optimal coordination problem for a
class of heterogeneous nonlinear multi-agent systems described by high-order
dynamics subject to both unknown nonlinearities and external disturbances.
Each agent has a private objective function and a steady-state constraint about
its output. We develop a composite distributed controller for each agent by a
combination of internal model and neural network techniques. All agent out-
puts are proven to reach the constrained minimal point of the aggregate objective
function with bounded residual errors irrespective of the unknown nonlinear-
ities and external disturbances. Two examples are finally given to demonstrate
the effectiveness of the algorithm.
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1 INTRODUCTION

Multi-agent coordination has been a hot topic over the last decades and has many practical applications in multi-robot
control, smart grid, and sensor networks.1-3 As one of the most interesting problems, distributed consensus opti-
mization attracts more and more attention due to the fast development of machine learning and big data tech-
nologies. Various effective algorithms have been proposed to achieve such an optimal coordination in different
situations.4-6

Recently, many efforts have been made to incorporate high-order agent dynamics into the distributed optimization
design. This is mainly due to the fact that distributed optimization tasks may be implemented or depend on physical
plants of high-order dynamics in practice, for example, source seeking in multi-robot systems7 and attitude formation
control of rigid bodies.8 For example, an optimal coordination problem was discussed in Zhang and Ordóñz9 via an
integral control rule for both double integrators and Euler–Lagrange agents. Distributed optimization with bounded con-
trols was also explored for both single and double integrators in Xie and Lin.10 For general linear systems, an embedded
technique was developed in Tang et al.11 to simplify the whole design by converting the original optimal coordination
problem into several subproblems and solving them almost independently. At the same time, some interesting attempts
have also been made for special classes of nonlinear multi-agent systems. For example, Wang et al.12 focused on a class
of nonlinear agents in output feedback form with unity relative degree and solved its optimal coordination problem by
improving the integral rule in Zhang and Ordóñz.9 The embedded design idea was also further exploited for nonlinear
agents in different forms.13-15
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So far, there are few optimal coordination results considering optimization constraints on the final states except for
single-integrator multi-agent systems as mentioned above. Compared with the unconstrained case, the set constraint will
pose some specific challenges. In fact, additional mechanisms are usually needed to ensure the satisfaction of constraints
on decision variables.16-19 Thus, the design of effective algorithms and the associated convergence analysis are more
involved. When facing multi-agent systems of nontrivial dynamics, the problem will inevitably be much more challenging
than the optimal coordination results derived either for single integrators or without such constraints.

Based on these observations, this article focuses on the optimal coordination problem for a typical class of hetero-
geneous nonlinear multi-agent systems with set constraints. Moreover, we assume the high-order agents are subject
to both unknown nonlinearities and external disturbances. To overcome the difficulties brought by the nonlinear-
ity, uncertainty, and constrained optimization requirement, we view the formulated problem as an asymptotic reg-
ulation problem where the reference point is determined by the constrained optimization problem and develop a
novel neural-network-based distributed control to solve the optimal coordination problem. We also provide rigor-
ous theoretical analysis to ensure the global stability of resultant closed-loop systems. To our knowledge, this might
be the first attempt to solve such kind of optimal coordination problems by neural-network-based controls in this
setting.

The main contributions of this article are twofold. On the one hand, we present and solve a constrained optimal coor-
dination problem for high-order nonlinear agents. Compared with existing optimal coordination results for high-order
agents,9-11,13,14,20 this article extends them to the case when the global optimization problem has set constraints. On
the other hand, a novel neural-network-based controller combined with internal model designs is developed to achieve
the optimal coordination goal in a distributed manner. The developed controller can reject external disturbances gen-
erated by certain autonomous linear exosystem while only the disturbance-free cases were discussed in some existing
works.10,11,13,14,20 More importantly, thanks to the approximation ability of neural networks, the composite design method
allows us to handle a large class of nonlinear high-order agents with uncertain dynamics. In fact, by removing the restric-
tive linearly parameterized condition on unknown nonlinearities, this work explicitly generalizes existing results for
either linear or nonlinear multi-agent systems.11,13

The remainder of this article is organized as follows: Problem formulation is presented in Section 2. Then the main
result is provided in Section 3 with detailed designs. Following that, two numerical examples are given to illustrate the
efficiency of our algorithm in Section 4. Finally, conclusions are given in Section 5.

Notation: Let Rn be the n-dimensional Euclidean space and Rn×m be the set of all n ×m matrices. 1n (or 0n) denotes
an n-dimensional all-one (or all-zero) column vector and 1n×m (or 0n×m) all-one (or all-zero) matrix. diag{b1, … , bn}
denotes an n × n diagonal matrix with diagonal elements bi, (i = 1, … ,n). col(a1, … , an) = [a⊺1, … , a⊺n]⊺ for column vec-
tors ai (i = 1, … ,n). For a vector x (or matrix A), ||x|| (||A||) denotes its Euclidean (or spectral) norm. For a square matrix
A, Tr(A) denotes the trace of A and ||A||F = Tr(A⊺A) denotes its Frobenius norm. A continuous function 𝛼 ∶ [0,+∞)→
[0,+∞) belongs to class∞ if it is strictly increasing and satisfies 𝛼(0) = 0 and lims→∞ 𝛼(s) = ∞.

2 PROBLEM FORMULATION

In this article, we consider a collection of N heterogeneous nonlinear systems modeled by:

x(ni)
i = gi([x]i, 𝜇) + biui + di(t), i ∈ = {1, … ,N}, (1)

where [x]i ≜ col(xi, … , x(ni−1)
i ) ∈ Rqni is the state variable of agent i with integer ni ≥ 2, xi is the output, ui ∈ Rq is the

control input, and 𝜇 ∈ R
n
𝜇 is an uncertain parameter vector. The high-frequency gain matrix bi is invertible. Without loss

of generality, we let bi = Iq and assume the vector-valued function gi ∶ Rqni ×R
n
𝜇 → Rq to be smooth but unknown to us.

The signal di(t) ∈ Rq represents the external disturbance of agent i modeled by

di(t) = Di(𝜇)𝜔i, 𝜔̇i = Si𝜔i, 𝜔i(0) = 𝜔i0 ∈ R
mi (2)

with 𝜔i ∈ Rmi , Si ∈ Rmi×mi and Di ∈ Rq×mi . Moreover, we assume that the matrix Si has no eigenvalue with nega-
tive real part. Note that system (2) can model many typical disturbances, including a combination of step signals
of arbitrary magnitudes, ramp signals of arbitrary slopes, and sinusoidal signals of arbitrary amplitudes and initial
phases.21
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As stated in existing publications,9,10,22 we endow this multi-agent system with the following distributed optimization
problem

minimize f (y) =
N∑

i=1
fi(y),

subject to y ∈ Ω0 ≜
N
∩

i=1
Ωi ⊂ R

q
, (3)

where fi ∶ Rq → R is differentiable. Furthermore, we assume that each agent only know a part of this optimization
problem in the sense that agent i only knows fi and Ωi.

To ensure the well-posedness of this optimization problem, we make the following assumption.23

Assumption 1. For i ∈ , the set Ωi is closed and convex with Ω0 nonempty; the function fi is li-strongly convex and
its gradient ∇fi is li-Lipschitz over an open set containing Ωi for constants li, li > 0.

Under this assumption, there exists a unique finite solution to problem (3) according to Theorem 2.2.10 in Nesterov.23

Denote it by y∗ = argminy∈Ω0
f (y). We aim to regulate the multi-agent system (1) such that the agent outputs reach this

global minimizer in spite of the uncertainties and disturbances. However, no agent can compute the exact y∗ and reach it as
expected by itself due to the lack of global information of f andΩ0. To see this point, we can introduce some local decision
variables for the agents as y1, … , yN and let ̃f (y) =

∑N
i=1 fi(yi)with y ≜ col(y1, … , yN). Then, the problem (3) is equivalent

to minimize ̃f (y) =
∑N

i=1 fi(yi) subject to a local set constraint yi ∈ Ωi and a global consensus constraint y1 = · · · = yN .
Since the consensus constraint can only be satisfied via a cooperation, no agent can thus reach the expected optimal
solution y∗ by itself. In this article, we are more interested in distributed designs where the agents can communicate with
some others.

To this end, we use a directed graph  = ( ,  , ) to describe the information-sharing relationships among those
agents with a node set , an edge set  ⊂ × , and a weight matrix  ∈ RN×N .24 If agent i can get the information
of agent j, then there is an edge (j, i) in  , that is, aij > 0. Here is an assumption to guarantee that any agent’s information
can reach another.

Assumption 2. Graph  is undirected and connected.

Regarding multi-agent system (1), function fi, set Ωi, and graph , the constrained optimal coordination problem for
agent (1) is formulated to find a feedback control ui for agent i by using its own and exchanged information with the
neighbors such that all trajectories of agents are well-defined over the time interval [0, +∞) and the resultant outputs
satisfy limt→+∞ ||xi(t) − y∗|| = 0 for each i ∈ .

This optimal coordination problem naturally ensures an output consensus of the multi-agent system (1). Compared
with existing output consensus coordination results,25-27 the formulation further requires the consensus point to be the
optimal solution y∗ specified by minimizing a global cost function across the whole network, which is more challenging.
It is remarkable that the optimality issue of multi-agent coordination has also been studied from the viewpoint of optimal
control.28-30 Different from these important results, we emphasize more on the optimal steady-state performance and
require the agent outputs to reach a consensus and minimize some global static optimization problem.

The formulated optimal coordination problem has been partially investigated for second-order agents.9,10,20 Here, we
further consider heterogeneous set constraints and higher-order agent dynamics possessing unknown nonlinearities and
external disturbances, which inevitability bring more difficulties in achieving such an optimal coordination than these
existing results.

3 MAIN RESULT

To solve this problem, we develop an internal model + neural network based design. The full design scheme is illustrated
in Figure 1. Briefly, we will first consider an auxiliary optimal coordination problem for certain virtual multi-agent systems
and convert the original problem into a robust stabilization problem. Then, we use internal models to reject the external
disturbance and neural network to approximate the uncertain nonlinearity. These two components together with an
adaptive stabilizer finally solve the formulated optimal coordination problem for the physical multi-agent system (1).
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F I G U R E 1 Block diagram to illustrate the design procedure

3.1 Problem conversion

We start from the same optimal coordination problem for a group of virtual integrator agents as follows:

ṙi = u0
i (4)

with state ri ∈ Rq and input u0
i ∈ Rq. Assign these agents with the same cost functions f1, … , fN and graph  as above. To

solve the optimal coordination problem for agent (4) is to develop proper input u0
i for agent i such that limt→+∞ ri(t) = y∗.

It is interesting to remark that the virtual agent (4) can be taken as a reference leader for the original agent i. In fact,
if this auxiliary problem can be solved, we only need to drive the original agents to track the outputs of these virtual
agents to achieve the expected optimal coordination for agent (1). Similar ideas can be found in many existing multi-agent
coordination papers.25,31-34

Note that this auxiliary problem has been well-studied in literature and many distributed algorithms can be utilized to
solve it, for example, the ones in Liu and Wang35 and Zeng et al..36 We suppose this auxiliary optimal coordination problem
has been done. With these estimates of the global optimal solution y∗ given by (4), we only need to consider a robust
tracking problem for agent (1) with reference ri(t) to solve our formulated problem. For better analysis, we denote xi1 =
xi − ri, xij ≜ x(j−1)

i for 2 ≤ j ≤ ni. Choose constants kij for 1 ≤ j ≤ ni − 1 such that the polynomial pi(𝜆) =
∑ni−1

j=1 kij𝜆
j−1 +

𝜆

ni−1 is Hurwitz. Letting zi = col(xi1, … , xini−1) and 𝜁i =
∑ni−1

j=1 kijxij + xini gives an error system as follows:

żi = Aizi + Bi𝜁i − Eiṙi,

̇
𝜁 i = gi(zi, 𝜁i, ri, 𝜇) + ui + di(t) − ki1ṙi, (5)

where gi(zi, 𝜁i, ri, 𝜇) = gi([x]i, 𝜇) + kini−1𝜁i − kini−1ki1xi1 +
∑ni−1

j=2 (kij−1 − kini−1kij)xij and

Ai =

[
0ni−2 Ini−2

−ki1 −ki2,… ,−kini−1

]

⊗ Iq, Bi =

[
0ni−2

1

]

⊗ Iq, Ei =

[
1

0ni−2

]

⊗ Iq.

From the above form, we have converted the formulated optimal coordination problem into some robust stabilization
problem by viewing ṙi as a vanishing perturbation. Compared with similar results for linear systems,10,11,20 our problem
involves extra nonlinearities from the set constraints and nonlinear agent dynamics. Moreover, the nonlinearities in
this multi-agent system cannot be perfectly linearly parameterized as that in Tang.13 Consequently, (adaptive) feedback
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linearization method is not applicable to the associated tracking problem because of the unknown nonlinearity and
external disturbances. Then, we have to seek new rules to solve our problem.

Inspired by existing designs,14,37,38 we split the whole control effort into two parts as follows:

ui = uid + uir, (6)

where uid is designed to compensate the external disturbance and uir is to handle the unknown nonlinearity and drive
agent i to track its reference ri.

It is well-known that internal-model-based control is effective to reject modeled disturbances.21 Here, we construct uid
following the same technical line. Let Pi(s) = snpi + p̂i1snpi

−1 + · · · + p̂inpi
−1s + p̂inpi

be the minimal polynomial of matrix Si

and denote 𝜏i = col(𝜏i1, … , 𝜏inpi
) with 𝜏ij =

dj−1di(t)
dtj−1 ∈ Rq. Take two matrices as follows:

Φi =

[
0 Inpi

−1

−p̂inpi
−p̂inpi

−1 · · · − p̂i1

]

⊗ Iq, Ψi =

[
1

0npi−1

]
⊤

⊗ Iq.

By a direct calculation, we obtain

𝜏̇i = Φi𝜏i, di = Ψi𝜏i. (7)

System (7) is called a steady-state generator.21 Since the pair (Ψi,Φi) is observable, there exists a constant matrix Gi such
that Fi ≜ Φi + GiΨi is Hurwitz. To reject the disturbance di, we propose an internal-model-based compensator

uid = −Ψi𝜂i, 𝜂̇i = Fi𝜂i + Giui. (8)

Next, we are going to propose applicable uir to complete the whole design. Since the nonlinear function gi([x]i, 𝜇) is
unknown to us, the term gi(zi, 𝜁i, ri, 𝜇) cannot be directly used for feedback. To tackle this issue, an intuitive idea is to
estimate this term in some way and develop an estimation-based control law. As neural networks have been proven to
be an effective tool to approximate unknown nonlinear functions,39-42 we present a neural-network-based rule combined
with the above internal-model-based compensator to solve our problem in the next subsection.

3.2 Solvability analysis

In this subsection, we present the whole design of our optimal coordination rule and provide theoretical stability analysis
of the closed-loop system.

For our optimal coordination problem, we aim at global stability performance. Note that neural-network-based con-
trols usually ensure control performance in the sense of semiglobal stability of the closed-loop systems.40,41 To overcome
this shortcoming, we try to utilize the neural networks to estimate the expected feedforwarding control efforts as that in
Chen et al..43 For this purpose, we let ui(y∗, 𝜇) = gi(col(y∗, 0q(ni−1)), 𝜇). This is indeed the feedforwarding effort for us
to regulate xi to the optimal point according to Theorem 3.8 in Huang.21 When the trajectory of ri(t) converges to the opti-
mal solution y∗, it should be uniformly bounded. Thus, we try to reproduce ui(ri, 𝜇) and develop neural-network-based
approximation rules for the sequel design.

To this end, we let ĝi(zi, 𝜁i, ri, 𝜇) ≜ gi(zi, 𝜁i, ri, 𝜇) − ui(ri, 𝜇). It is verified that ĝi(0, 0, ri, 𝜇) = 0 for any ri ∈ Rq and
𝜇 ∈ R

n
𝜇 . Motivated by existing neural-network-based designs,37,43,44 we use a radial basis function (RBF) network as a

function approximator and rewrite ui as follows:

ui(ri, 𝜇) = W⊺
i 𝝈i(ri) + 𝝐i(ri),

where 𝝈i(ri) = col(𝜎i1(ri), … , 𝜎inw(ri)) is the activation function vector with 𝜎ij(s) = e−(s−𝜇
c
ij)

2∕𝜅2
i for j = 1, … ,nw and Wi ∈

Rnw×q is the weight matrix. Here, 𝜇c
ij is the center of the receptive field, 𝜅i is the width of the Gaussian function, and 𝝐i(ri)

is the residual error. By the universal approximation theorem,40 for any given 𝜀 > 0, there exists an ideal constant weight
W∗

i ∈ Rnw×q with a large enough integer nw > 0 such that ||𝝐i(ri)|| < 𝜀 over any compact set.
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Since the ideal weight W∗
i cannot be known a prior, we develop the following adaptive neural-network-based rule to

tackle this issue:

uir = −W⊺
i 𝝈i(ri) − 𝜃i𝜌i(𝜁i)𝜁i,

̇W i = −𝓁(Wi −W0
i ) + 𝝈i(ri)𝜁⊺i ,

̇
𝜃i = −𝓁(𝜃i − 𝜃0

i ) + 𝜌i(𝜁i)||𝜁i||
2
, (9)

where function 𝜌i > 0 is to be specified later. Here Wi, 𝜃i are dynamic gains, 𝓁 > 0 is a fixed chosen constant to ensure
the boundedness of Wi and 𝜃i, and the term −𝜃i𝜌i(𝜁i)𝜁i is designed to dominate the unknown nonlinearity in (5). Simi-
lar adaptive controllers have been used in literature.41,44 The constants W0

i and 𝜃0
i are chosen parameters based on the

(possible) prior information of this multi-agent system, especially the nonlinearities and initial conditions of the whole
system. Without further requirements, we can just set the default values as W0

i = 0 and 𝜃0
i = 0.

For the auxiliary constrained optimal coordination problem, we directly borrow the cooperative laws developed in Liu
and Wang.35 Combining (8) and (9), we propose the full optimal coordination controller for agent i as follows:

ui = −W⊺
i 𝝈(ri) − 𝜃i𝜌i(𝜁i)𝜁i − Ψi𝜂i,

𝜂̇i = Fi𝜂i + Giui,

̇W i = −𝓁(Wi −W0
i ) + 𝝈i(ri)𝜁⊺i ,

̇
𝜃i = −𝓁(𝜃i − 𝜃0

i ) + 𝜌i(𝜁i)||𝜁i||
2
,

ṙi = −2ri + 2PΩi (ri − ∇fi(ri) − ro
i − vo

i ),
v̇i = ri, (10)

where ro
i ≜

∑N
j=1aij(ri − rj), vo

i ≜
∑N

j=1aij(vi − vj), and PΩi is the projector operator from Rq to Ωi. Here, the 𝜂i subsystem
is the internal model to reject the modeled disturbance (2), Wi, 𝜃i are adaptive parameters in the neural networks to
approximate the expected feedforwarding control efforts, and ri, vi are utilized to generate the global optimal solution y∗.
Clearly, this controller is distributed as agent i only uses its own and neighboring information.

Putting nonlinear agent (1) and distributed controller (10) together, we obtain the associated closed-loop system as
follows:

żi = Aizi + Bi𝜁i − Eiṙi,

̇
𝜁 i = ĝi(zi, 𝜁i, ri, 𝜇) + ui(ri, 𝜇) −W⊺

i 𝝈(ri) − 𝜃i𝜌i(𝜁i)𝜁i − Ψi𝜂i + di − ki1ṙi,

𝜂̇i = Fi𝜂i + Giui,

̇W i = −𝓁(Wi −W0
i ) + 𝝈i(ri)𝜁⊺i ,

̇
𝜃i = −𝓁(𝜃i − 𝜃0

i ) + 𝜌i(𝜁i)||𝜁i||
2
,

ṙi = −2ri + 2PΩi(ri − ∇fi(ri) − ro
i − vo

i ),
v̇i = ri. (11)

It is ready to provide our main theorem of this article.

Theorem 1. Consider the multi-agent system (1) with graph  and function fi and suppose Assumptions 1 and 2 holds.
Using controller (10) to solve the constrained optimal coordination problem, one has the following results:

• The trajectories of xi(t), … , x(ni−1)
i (t) are bounded for all t ≥ 0, i = 1, … ,N;

• The coordination errors ||xi(t) − y∗|| are uniformly ultimately bounded, that is, this multi-agent system achieves approxi-
mate optimal coordination with residual errors.

Proof. Let 𝜂i = 𝜂i − 𝜏i − Gi𝜁i, W i = Wi −W∗
i , and 𝜃i = 𝜃i − 𝜃∗i with 𝜃∗i > 0 to be specified later. Then, we have

żi = Aizi + Bi𝜁i − Eiṙi,

̇

𝜂i = Fi𝜂i + FiGi𝜁i − Giĝi(zi, 𝜁i, ri, 𝜇) + ki1ṙi,
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̇
𝜁 i = g̃i(zi, 𝜂i, 𝜁i, ri, 𝜇) −W

⊺
i 𝝈(ri) − 𝜃∗i 𝜌i(𝜁i)𝜁i − 𝜃i𝜌i(𝜁i)𝜁i + 𝝐i(ri) − ki1ṙi,

̇W i = −𝓁(W i +W∗
i −W0

i ) + 𝝈i(ri)𝜁⊺i ,
̇

𝜃i = −𝓁(𝜃i + 𝜃∗i − 𝜃
0
i ) + 𝜌i(𝜁i)||𝜁i||

2
,

ṙ = −2r + 2PΩ(r − ∇̃f (r) − (L ⊗ Iq)r − (L ⊗ Iq)v),
v̇ = r, (12)

where r = col(r1, … , rN), v = col(v1, … , vN), PΩ is the projector operator determined by PΩi , and g̃i(zi, 𝜂i, 𝜁i, ri, 𝜇) =
ĝi(zi, 𝜁i, ri, 𝜇) − Ψi𝜂i + ΨiGi𝜁i. It can be easily verified that gi(0, 0, ri, 𝜇) = 0 and g̃i(0, 0, 0, ri, 𝜇) = 0 for any ri ∈ Rq

and 𝜇 ∈ R
n
𝜇 . The proof can be split into two steps as follows:

Step 1: We consider the stability of the first two subsystems col(zi, 𝜂i). As the matrices Ai and Fi are Hurwitz, there
exist unique positive definite matrices Piz and Pi𝜂 such that PizAi + A⊺

i Piz = −2Iq(ni−1) and Pi𝜂Fi + F⊺i Pi𝜂 = −2Iqnpi
. Letting

Viz = z⊺i Pizzi and Vi𝜂 = 𝜂
⊺
i Pi𝜂𝜂i gives

̇V iz = 2z⊺i Piz(Aizi + Bi𝜁i − Eiṙi)
= 2z⊺i PizAizi + 2z⊺i PizBi𝜁i − 2z⊺i PizEiṙi

≤ −||zi||
2 + 2||PizBi||

2||𝜁i||
2 + 2||PizEi||

2||ṙi||
2

and

̇V i𝜂 = 2𝜂⊺i Pi𝜂[Fi𝜂i + FiGi𝜁i − Giĝi(zi, 𝜁i, ri, 𝜇) + ki1ṙi]
= 2𝜂⊺i Pi𝜂Fi𝜂i + 2𝜂⊺i Pi𝜂FiGi𝜁i − 2𝜂⊺i Pi𝜂Giĝi(zi, 𝜁i, ri, 𝜇) + 2𝜂⊺i Pi𝜂ki1ṙi

≤ −||𝜂i||
2 + 3||Pi𝜂FiGi||

2||𝜁i||
2 + 3||Pi𝜂ki1||

2||ṙi||
2

+ 3||Pi𝜂Gi||
2||ĝi(zi, 𝜁i, ri, 𝜇)||2.

Note that ĝi(0, 0, ri, 𝜇) = 0 and g̃i(0, 0, 0, ri, 𝜇) = 0 for any ri and 𝜇. By Lemma 7.8 in Huang,21 there exist some
known smooth functions ̂

𝜙i1, ̂𝜙i2, ̃𝜙i1, ̃
𝜙i2 > 1 and unknown constants ĉig, c̃ig > 1 such that

||ĝi(zi, 𝜁i, ri, 𝜇)||2 ≤ ĉig[ ̂𝜙i1(zi)||𝜁i||
2 + ̂

𝜙i2(𝜁i)||𝜁i||
2],

||g̃i(zi, 𝜂i, 𝜁i, ri, 𝜇)||2 ≤ c̃ig[ ̃𝜙i1(z̃i)||ẑi||
2 + ̃

𝜙i2(𝜁i)||𝜁i||
2], (13)

where z̃i ≜ col(zi, 𝜂i) for short.
We apply Theorem 1 in Sontag and Teel45 to zi-subsystem and obtain that, for any given smooth Δiz(zi) > 0, there

exists a differentiable function V 1
iz(zi) satisfying that

𝛼iz(||zi||) ≤ V 1
iz(zi) ≤ 𝛼iz(||zi||)

̇V 1
iz ≤ −Δiz(zi)||zi||

2 + 𝜎1
i𝜁 𝛾

1
i𝜁 (𝜁i)||𝜁i||

2 + 𝜎1
ir𝛾

1
ir(ṙi)||ṙi||

2

for some known smooth functions 𝛼iz, 𝛼iz ∈ ∞, 𝛾1
i𝜁 , 𝛾

1
ir ≥ 1 and unknown constants 𝜎1

i𝜁 , 𝜎
1
ir ≥ 1.

Let Viz̃ = 𝓁izV 1
iz(zi) + Vi𝜂(𝜂i)with a constant 𝓁iz > 0 to be specified later. It is positive definite and radially unbounded.

Its time derivative along the trajectory of system (12) satisfies

̇V iz̃ ≤ −𝓁izΔiz(zi)||zi||
2 + 𝓁iz𝜎

1
i𝜁 𝛾

1
i𝜁 (||𝜁i||)||𝜁i||

2 + 𝓁iz𝜎
1
ir𝛾ir(||ṙi||)||ṙi||

2 − ||𝜂i||
2 + 3||Pi𝜂FiGi||

2||𝜁i||
2

+ 3||Pi𝜂Gi||
2||ĝi(zi, 𝜁i, ri, 𝜇)||2 + 3||Pi𝜂ki1||

2||ṙi||
2

≤ −[𝓁izΔiz(zi) − 3ĉig||Pi𝜂Gi||
2
̂
𝜙i1(||zi||)]||zi||

2 − ||𝜂i||
2 + [𝓁iz𝜎

1
i𝜁 𝛾

1
i𝜁 (𝜁i) + 3||Pi𝜂FiGi||

2

+ 3ĉig||Pi𝜂Gi||
2
̂
𝜙i2(𝜁i)]||𝜁i||

2 + [𝓁iz𝜎
1
ir𝛾

1
ir(ṙi) + 3||Pi𝜂ki1||

2]||ṙi||
2
.

Let Δiz, 𝛾̃ i𝜁 , 𝛾̃ ir be smooth functions satisfying

Δiz(zi) ≥ 2 max{ ̂𝜙i1(||zi||), 1}, 𝛾̃ i𝜁 (𝜁i) ≥ 3 max{𝛾1
i𝜁 (𝜁i) ̂𝜙i2(𝜁i), 1}, 𝛾̃ ir(ṙi) ≥ 2 max{𝛾1

ir(ṙi), 1}
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and 𝓁iz, 𝜎̃i𝜁 , 𝜎̃ir be positive constants such that

𝓁iz ≥ max{3ĉig||Pi𝜂Gi||
2
, 1}, 𝜎̃i𝜁 ≥ max{𝓁iz𝜎

1
i𝜁 , 3||Pi𝜂FiGi||

2}, 𝜎̃ir ≥ max{𝓁iz𝜎
1
ir, 3||Pi𝜂ki1||

2}.

It follows then

̇V iz̃ ≤ −||z̃i||
2 + 𝜎̃i𝜁 𝛾̃ i𝜁 (𝜁i)||𝜁i||

2 + 𝜎̃ir 𝛾̃ ir(ṙi)||ṙi||
2
.

Step 2: We consider the stability of the col(z̃i, 𝜁i)-subsystem. Using the changing supply functions technique to this
subsystem, one has that, for any given smooth Δiz̃(z̃i) > 0, there exists a continuously differentiable function V 1

iz̃(z̃i)
satisfying that

𝛼iz̃(||z̃i||) ≤ V 1
iz̃(z̃i) ≤ 𝛼iz̃(||z̃i||),

̇V 1
iz̃ ≤ −Δiz̃(z̃i)||z̃i||

2 + 𝜎̃1
i𝜁 𝛾̃

1
i𝜁 (𝜁i)||𝜁i||

2 + 𝜎̃1
ir 𝛾̃

1
ir(ṙi)||ṙi||

2

for some known smooth functions 𝛼iz̃, 𝛼iz̃ ∈ ∞, 𝛾̃1
i𝜁 , 𝛾̃

1
ir ≥ 1 and unknown constants 𝜎̃1

i𝜁 , 𝜎̃
1
ir ≥ 1.

Let Vi(z̃i, 𝜁i,W i, 𝜁i) = V 1
iz̃(z̃i) + ||𝜁i||

2 + Tr(W
⊺
i W i) + 𝜃

2
i . It is positive definite and radially unbounded. Taking its

derivative along the trajectory of (12) gives

̇V i ≤ −Δiz̃(z̃i)||z̃i||
2 + 𝜎̃1

i𝜁 𝛾̃
1
i𝜁 (𝜁i)||𝜁i||

2 + 𝜎̃1
ir 𝛾̃

1
ir(ṙi)||ṙi||

2 + 2𝜁⊺i [g̃i(zi, 𝜂i, 𝜁i, ri) −W
⊺
i 𝝈i(ri) − 𝜃∗i 𝜌i(𝜁i)𝜁i − 𝜃i𝜌i(𝜁i)𝜁i]

+ 2𝜁⊺i [𝝐i(ri) − ki1ṙi] + 2Tr(W
⊺
i [−𝓁W i + 𝓁(W∗

i −W0
i ) + 𝝈i(ri)𝜁⊺i ]) + 2𝜃i[−𝓁(𝜃i + 𝜃∗i − 𝜃

0
i ) + 𝜌i(𝜁i)||𝜁i||

2]

≤ −Δiz̃(z̃i)||z̃i||
2 − 2𝜃∗i 𝜌i(𝜁i)||𝜁i||

2 − 2𝓁Tr(W
⊺
i W i) − 2𝓁||𝜃i||

2 + 𝜎̃1
i𝜁 𝛾̃

1
i𝜁 (𝜁i)||𝜁i||

2 + 2𝜁⊺i g̃i(zi, 𝜂i, 𝜁i, ri)

− 2𝜁⊺i ki1ṙi − 2𝜁⊺i 𝝐i(ri) − 2𝓁Tr(W
⊺
i (W∗

i −W0
i )) − 2𝓁𝜃

⊺
i (𝜃∗i − 𝜃

0
i ) + 𝜎̃

1
ir 𝛾̃

1
ir(ṙi)||ṙi||

2
,

where we use the identity Tr(ab⊺) = b⊺a for any two column vectors a, b ∈ Rn.
Combining this inequality with (13), we further use Young’s inequality and obtain that

̇V i ≤ −Δiz̃(z̃i)||z̃i||
2 − 2𝜃∗i 𝜌i(𝜁i)||𝜁i||

2 − 2𝓁Tr(W
⊺
i W i) − 2𝓁||𝜃i||

2 + 𝜎̃1
i𝜁 𝛾̃

1
i𝜁 (𝜁i)||𝜁i||

2 + c̃ig||𝜁i||
2

+ [ ̃𝜙i1(z̃i)||ẑi||
2 + ̃

𝜙i2(𝜁i)||𝜁i||
2)] + ||𝜁i||

2 + k2
i1||ṙi||

2 + ||𝜁i||
2 + ||𝝐i(ri)||2

− 𝓁Tr(W
⊺
i W i) − 𝓁Tr((W∗

i −W0
i )
⊺(W∗

i −W0
i )) + 𝓁||𝜃i||

2 + 𝓁||𝜃∗i − 𝜃
0
i ||

2

≤ −[Δiz̃(z̃i) − ̃
𝜙i1(z̃i)]||z̃i||

2 − 𝓁Tr(W
⊺
i W i) − [2𝜃∗i 𝜌i(𝜁i) − 𝜎̃1

i𝜁 𝛾
1
i𝜁 (𝜁i) − ̃

𝜙i2(𝜁i) − c̃ig − 2]||𝜁i||
2

− 𝓁||𝜃i||
2 + ciṙ||ṙi||

2 + ||𝝐i(ri)||2 + 𝓁||W∗
i −W0

i ||
2
F + 𝓁||𝜃

∗
i − 𝜃

0
i ||

2

with ciṙ ≜ sup0≤t≤+∞ |𝜎̃1
ir 𝛾̃

1
ir(ṙi(t))| + k2

i1. Note that this term ciṙ is well-defined due to the boundedness of ri and ṙi.
Select two smooth functions Δiz̃, 𝜌i such that

Δiz̃(z̃i) ≥ 2 max{ ̃𝜙i1(z̃i), 1}, 𝜌i(𝜁i) ≥ max{𝛾1
i𝜁 (𝜁i), ̃

𝜙i2(𝜁i), 1}

and a constant 𝜃∗i such that 𝜃∗i ≥ max{𝜎̃1
i𝜁 , c̃ig, 1}. It follows then

̇V i ≤ −||z̃i||
2 − ||𝜁i||

2 − 𝓁Tr(W
⊺
i W i) − 𝓁||𝜃i||

2 + Ξi, (14)

where Ξi ≜ ciṙ||ṙi||
2 + 𝜖2 + 𝓁||W∗

i −W0
i ||

2
F + 𝓁||𝜃

∗
i − 𝜃

0
i ||

2.
From the inequality (14), we can obtain that the first five subsystems in (12) is input-to-state stable with Ξi as its

input by Theorem 4.19 in Khalil.46 Since Ξi is upper bounded according to Theorem 2 in Liu and Wang,35 we conclude
the uniformly ultimate boundedness of trajectories of 𝜂i and 𝜉i according to Definition 4.7 in Khalil.46 From the defi-
nitions of 𝜂i, 𝜉i, and y∗, one can obtain the boundedness of state [x]i and coordination error xi(t) − y∗. This completes
the proof. ▪
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Remark 1. This optimal coordination problem has been partially discussed in literature9-11,20 for linear agents. By
contrast, the high-order agents here are uncertain nonlinear ones and further subject to heterogeneous set con-
straints and external disturbances. Meanwhile, different from existing adaptive rules for uncertain multi-agent sys-
tems,13,14 the proposed design methodology is a combination of neural network and internal model techniques.
This joint design not only enables the controller to reject a large class of external disturbance but also facili-
tates us to successfully remove the restrictive linearly parameterized condition on nonlinearities required in existing
results.13

Remark 2. From the expression of Ξi in inequality (14), both Ξi and the residual error ||xi(t) − y∗|| can be made smaller
than any given positive constant by selecting a small enough l and increasing the number n

𝜔
of neurons in the neural

network. In this sense, this constrained optimal coordination problem for nonlinear multi-agent system (1) is solved by
our distributed controller (10) in a globally practical sense.

4 NUMERICAL EXAMPLE

In this section, we present two numerical examples to illustrate the effectiveness of our designs.

Example 1. Consider a group of single-link manipulators with flexible joints46 modeled by:

Ji1q̈i1 +MigLi sin qi1 + ki(qi1 − qi2) = 0, (15)
Ji2q̈i2 − ki(qi1 − qi2) = ui + di, i = 1, … , 4,

where qi1, qi2 are the angular positions, Ji1, Ji2 are the moments of inertia, Mi is the total mass, Li is a distance, ki is a spring
constant, ui is the torque input, and di is the actuated disturbance of manipulator i. Suppose the information-sharing
graph is depicted in Figure 2 with unity edge weights. It apparently satisfies Assumption 2. Letting xi = qi1, we can rewrite
system (15) into the form (1) with ni = 4, bi = ki∕(Ji1Ji2), and

gi([x]i, Li) = −x(2)i

(
MigLi

Ji1
cos xi +

ki

Ji1
+ ki

Ji2

)

+
MigLi

Ji1

(

ẋ2
i −

ki

Ji2

)

sin xi.

We want to steer these manipulators to rendezvous at a common position that minimizes the aggre-
gate distance from their starting position to this final position to save resources. For this purpose, we take
the cost functions as fi(y) = 1

2
||y − qi1(0)||2 and f (y) = 1

2

∑4
i=1||y − qi1(0)||2 (i = 1, … , 4). To make this problem

more interesting, we assume that Li = (1 + 𝜇i4)Li0 with nominal length Li0 and the external disturbances are
described by

D1 = 1 + 𝜇15, S1 = 0, D2 = 1 + 𝜇25, S2 = 1,

D3 = [1 + 𝜇35 0], S3 =

[
0 1
−1 0

]

, D4 = [1 1 + 𝜇45 0], S4 = diag

{

1,

[
0 2
−2 0

]}

,

with unknown parameter 𝜇ij. Here d2(t) and d4(t) might tend to infinity depending the initial condition.
Note that feedback linearization rule fails to solve our problem due to the unknown parameters. Nevertheless, we can

verify all assumptions in this article and thus develop a neural-network-based control (10) for this multi-agent system to

F I G U R E 2 Communication graph  in our examples
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solve this problem according to Theorem 1. To reject those external disturbances for agents, we choose

F1 = −1, G1 = −1, F2 =

[
−4 1
−4 0

]

, G2 =

[
−4
−4

]

,

F3 =

[
−2 1
−1 0

]

, G3 =

[
−2
0

]

, F4 =

[
−4 2
−2 0

]

, G4 =

[
−4
0

]

for the internal model (8). In the simulations, we set Ji1 = Ji2 = 1, Li0 = 1, Mi = 1, ki = 1 and assume that the uncertain
parameter 𝜇ij is randomly chosen between−0.5 and 0.5. To approximate the unknown feedforwarding input, we construct
the RBF neural network with the parameters n

𝜔
= 21, 𝜇c

ij = 0.5 ∗ (j − 11), and 𝜅i = 1.62. The nonlinear control gain func-
tion is chosen as 𝜌i(s) = s4 + 1 with parameters ki1 = 1, l = 0.01 for 1 ≤ i ≤ 4. All initial conditions are randomly chosen.
The simulation result is shown in Figure 3, where xi(t) is found to quickly converge to the neighborhood of the optimal
point y⋆ = 1

4

∑4
i=1qi1(0) with small residual errors.

Example 2. Consider another multi-agent system including two controlled Van der Pol oscillators

ẋi1 = xi2,

ẋi2 = −(1 + 𝜇i1)xi1 + (1 + 𝜇i2)(𝜇i3 − x2
i1)xi2 + ui + di, i = 1, 2

and two controlled Duffing equations

ẋi1 = xi2,

ẋi2 = −(1 + 𝜇i1)xi1(𝜇i2 − x2
i1) − (1 + 𝜇i3)xi2 + ui + di, i = 3, 4

with input ui, output xi1, and disturbance di. Assume the disturbances are generated by (2) with

Di = 1 + 𝜇i4, Si =

[
0 1
−i 0

]

, i = 1, … , 4

and the unknown parameter 𝜇ij is randomly chosen between −0.5 and 0.5. The information-sharing graph is taken as the
same as Example 1.

F I G U R E 3 Profiles of agent outputs in Example 1
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F I G U R E 5 Profiles of 𝝐i and eid = uid(t) + di(t) in Example 2

Although all agents are of the form (1) with xi = xi1, ni = 2, and q = 1, the two classes of agent dynamics pos-
sess very different behaviors. This heterogeneity definitely brings many challenges in resolving their coordination
problem. Moreover, we choose some complex cost functions as f1(y) = (y − 8)2, f2(y) = y2∕(80 log(y2 + 2)) + (y − 5)2,
f3(y) = y2∕(20

√
y2 + 1) + y2, f4(y) = log

(
e−0.05y + e0.05y) + y2 with local interval constraints [ −3 + i, 1 + i ]. Assumption 1

is fulfilled with li = 1 and li = 3 for i = 1, … , 4. Then, the formulated coordination problem for these agents can be solved
by a controller of the form (10). In fact, the optimal solution to the global constrained optimization problem is y∗ = 2
while the unconstrained optimal point is yu = 3.24 by directly minimizing

∑4
i=1fi(y).

For simulations, we choose the following matrices

Fi =

[
−2i 1
−i 0

]

, Gi =

[
−2i

0

]

, i = 1, … , 4
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for the internal model (8) and use the same RBF neural network as in Example 1. The control gain function is chosen
as 𝜌i(s) = s6 + 1 with parameters ki1 = 1, l = 0.001 for 1 ≤ i ≤ 4. With randomly chosen initial conditions, the profiles
of agent outputs under controller (10) are shown in Figure 4. We also list the approximation errors of feedforwarding
input and external disturbance by neural networks and internal models in Figure 5. It can be found that both 𝜀i(t) and
eid(t) converge toward zero as t grows. The performance verifies the effectiveness of controller (10) to ensure the expected
constrained optimal coordination for this heterogeneous uncertain multi-agent system (1).

5 CONCLUSION

We have investigated the constrained optimal coordination problem for a class of heterogeneous nonlinear agents sub-
ject to both unknown dynamics and external disturbances. Jointly with internal-model-based designs, novel distributed
neural-network-based controllers have been developed to overcome the technical difficulties brought by uncertainties,
disturbances, and decision constraints under some standard assumptions. Output feedback control for more general
multi-agent systems and communication graphs will be our future work.
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