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Abstract
In this paper, we aim to develop distributed continuous-time algorithms over directed graphs to seek the Nash
equilibrium in a noncooperative game. Motivated by the recent consensus-based designs, we present a distributed
algorithm with a proportional gain for weight-balanced directed graphs. By further embedding a distributed
estimator of the left eigenvector associated with zero eigenvalue of the graph Laplacian, we extend it to the case
with arbitrary strongly connected directed graphs having possible unbalanced weights. In both cases, the Nash
equilibrium is proven to be exactly reached with an exponential convergence rate. An example is given to illustrate
the validity of the theoretical results.
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1 Introduction
Nash equilibrium seeking in noncooperative games has at-
tracted much attention due to its broad applications in
multi-robot systems, smart grids, and sensor networks
[1–3]. In such problems, each decision-maker/player has
an individual payoff function depending upon all players’
decisions and aims at reaching an equilibrium from which
no player has incentive to deviate. Information that one
player knows about others and the information sharing
structure among these players play a crucial role in resolv-
ing these problems. In a classical full-information setting,
each player has access information including its own ob-
jective function and the decisions taken by the other play-
ers in the game [4–6]. As the decisions of all other agents
can be not directly available due to the privacy concerns
or communication cost, distributed designs only relying
on each player’s local information are of particular inter-
est, and sustained efforts have been made to generalize the
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classical algorithms to this case via networked information
sharing.

In multi-agent coordination literature, the information
structure (or the information sharing topology) among
agents is often described by graphs [7]. Following this
terminology, the Nash equilibrium seeking problem in
the classical full-information setting involves a complete
graph where any two players can directly communicate
with each other [4, 5, 8–10]. A similar scenario is the
case when this full-decision information is obtained via
broadcasts from a global coordinator [11]. By contrast, dis-
tributed rules via local communication and computation
do not require this impractical assumption on the infor-
mation structure.

To overcome the difficulty brought by the lack of full in-
formation, a typical approach is to leverage the consensus-
based mechanism to share information via network diffu-
sion [12–15]. To be specific, each player maintains a local
estimate vector of all players’ decisions and updates this
vector by an auxiliary consensus process with its neigh-
bors. After that, the player can implement a best-response
or gradient-play rule with the estimate of the joint deci-
sion. For example, the authors conducted an asynchronous
gossip-based algorithm for finding a Nash equilibrium in
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[16]. The two awake players will appoint their estimates
as their average and then take a gradient step. Similar re-
sults have been delivered for general connected graphs by
extending classical gradient-play dynamics [17, 18]. Along
this line, considerable progress has been made with differ-
ent kinds of discrete-time or continuous-time Nash equi-
librium seeking algorithm with or without coupled deci-
sion constraints even for nontrivial dynamic players [19–
26]. However, all these results except a few for special
aggregative games heavily reply on the assumption that
the underlying communication graph is undirected, which
definitely narrows down the applications of these Nash
equilibrium seeking algorithms.

Based on the aforementioned observations, this paper is
devoted to the solvability of the Nash equilibrium seeking
problem for general noncooperative games over directed
graphs. Moreover, we aim to obtain an exponential conver-
gence rate. Note that the symmetry of information sharing
structure plays a crucial role in both analysis and synthesis
of existing Nash equilibrium seeking algorithms. However,
the information structure will lose such symmetry over di-
rected graphs, which certainly makes the considered prob-
lem more challenging.

To solve this problem, we start from the recent work [17].
In [17], the authors presented an augmented gradient-
play dynamics and showed the dynamics converge to con-
sensus on the Nash equilibrium exponentially fast under
undirected and connected graphs. We will first develop a
modified version of gradient-play algorithms for weight-
balanced digraphs by adding a proportional gain, and then
extend it to the case with arbitrary strongly connected
digraph by further embedding a distributed estimator of
the left eigenvector associated with zero eigenvalue of the
graph Laplacian. Under some similar assumptions on the
cost functions as in [17], we show that the developed two
algorithms can indeed recover the exponential conver-
gence rate in both cases. Moreover, by adding such a free-
chosen proportional gain parameter, we provide an alter-
native way to remove the extra graph coupling condition
other than singular perturbation analysis as that in [17].
To the best knowledge of us, this is the first exponentially
convergent continuous-time result to solve the Nash equi-
librium seeking problem over general directed graphs.

The remainder of this paper is organized as follows:
Some preliminaries are presented in Sect. 2. The problem
formulation is given in Sect. 3. Then, the main designs are
detailed in Sect. 4. Following that, an example is given to
illustrate the effectiveness of our algorithms in Sect. 5. Fi-
nally, concluding remarks are given in Sect. 6.

2 Preliminaries
In this section, we present some preliminaries of convex
analysis [27] and graph theory [7] for the following analy-
sis.

2.1 Convex analysis
Let Rn be the n-dimensional Euclidean space and R

n×m be
the set of all n × m matrices. 1n (or 0n) represents an n-
dimensional all-one (or all-zero) column vector and 1n×m
(or 0n×m) all-one (or all-zero) matrix. We may omit the
subscript when it is self-evident. diag(b1, . . ., bn) represents
an n × n diagonal matrix with diagonal elements bi with
i = 1, . . ., n. col(a1, . . ., an) = [a�

1 , . . ., a�
n ]� for column vec-

tors ai with i = 1, . . ., n. For a vector x and a matrix A, ‖x‖
denotes the Euclidean norm and ‖A‖ the spectral norm.

A function f : Rm → R is said to be convex if, for any
0 ≤ a ≤ 1 and ζ1, ζ2 ∈ R

m, f (aζ1 + (1 – a)ζ2) ≤ af (ζ1) +
(1 – a)f (ζ2). It is said to be strictly convex if this inequal-
ity is strict whenever ζ1 �= ζ2. A vector-valued function
� : Rm → R

m is said to be ω-strongly monotone, if for
any ζ1, ζ2 ∈ R

m, (ζ1 – ζ2)�[�(ζ1) – �(ζ2)] ≥ ω‖ζ1 – ζ2‖2.
Function � : Rm →R

m is said to be ϑ-Lipschitz, if for any
ζ1, ζ2 ∈ R

m, ‖�(ζ1) – �(ζ2)‖ ≤ ϑ‖ζ1 – ζ2‖. Apparently, the
gradient of an ω-strongly convex function is ω-strongly
monotone.

2.2 Graph theory
A weighted directed graph (digraph) is described by G =
(N ,E ,A) with the node set N = {1, . . ., N} and the edge
set E . (i, j) ∈ E denotes an edge from node i to node j.
The weighted adjacency matrix A = [aij] ∈ R

N×N is de-
fined by aii = 0 and aij ≥ 0. Here aij > 0 iff there is an
edge (j, i) in the digraph. The neighbor set of node i is
defined as Ni = {j | (j, i) ∈ E}. A directed path is an al-
ternating sequence i1e1i2e2. . .ek–1ik of nodes il and edges
em = (im, im+1) ∈ E for l = 1, 2, . . ., k. If there is a directed
path between any two nodes, then the digraph is said to be
strongly connected. The in-degree and out-degree of node
i are defined by din

i =
∑N

j=1 aij and dout
i =

∑N
j=1 aji. A digraph

is weight-balanced if din
i = dout

i holds for any i = 1, . . . , N .
The Laplacian matrix of G is defined as L � Din – A with
Din = diag(din

1 , . . . , din
N ). Note that L1N = 0N for any digraph.

When it is weight-balanced, we have 1�
N L = 0�

N and the ma-
trix Sym(L) � L+L�

2 is positive semidefinite.
Consider a group of vectors {1, a2, . . . , aN } with ai the ith

standard basis vector of RN , i.e., all entries of ai are zero
except the i-th, which is one. These vectors are verified
to be linearly independent. We apply the Gram-Schmidt
process to them and obtain a group of orthonormal vec-
tors {â1, . . . , âN }. Let M1 = â1 ∈ R

N and M2 = [â2 . . . âN ] ∈
R

N×(N–1). It can be verified that M1 = 1√
N 1N , M�

1 M1 = 1,
M�

2 M2 = IN–1, M�
2 M1 = 0N–1, and M1M�

1 + M2M�
2 = IN .

Then, for a weight-balanced and strongly connected di-
graph, we can order the eigenvalues of Sym(L) as 0 = λ1 <
λ2 ≤ · · · ≤ λN and further have λ2IN–1 ≤ M�

2 Sym(L)M2 ≤
λN IN .

3 Problem formulation
In this paper, we consider a multi-agent system consist-
ing of N agents labeled as N = {1, . . . , N}. They play an
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N-player noncooperative game defined as follows: Agent
i is endowed with a continuously differentiable cost func-
tion Ji(zi, z–i), where zi ∈R denotes the decision (or action)
profile of agent i and z–i ∈ R

N–1 denotes the decision pro-
file of this multi-agent system except for agent i. In this
game, each player seeks to minimize its own cost function
Ji by selecting a proper decision zi. Here we adopt a uni-
dimensional decision variable for the ease of presentation
and multiple dimensional extensions can be made without
any technical obstacles.

The equilibrium point of this noncooperative game can
be defined as in [5].

Definition 1 Consider the game G = {N , Ji,R}. A decision
profile z∗ = col(z∗

1, . . . , z∗
N ) is said to be a Nash equilibrium

(NE) of the game G if Ji(z∗
i , z∗

–i) ≤ Ji(zi, z∗
–i) for any i ∈ N

and zi ∈R.

At a Nash equilibrium, no player can unilaterally de-
crease its cost by changing the decision on its own, and
thus all agents tend to keep at this state. Denote F(z) �
col(∇1J1(z1, z–1), . . . ,∇N JN (zN , z–N )) ∈ R

N with ∇iJi(zi,
z–i) � ∂

∂zi
Ji(zi, z–i) ∈ R. Here F is called the pseudogradi-

ent associated with J1, . . . , JN .
To ensure the well-posedness of our problem, the follow-

ing assumptions are made throughout the paper:

Assumption 1 For each i ∈ N , the function Ji(zi, z–i) is
twice continuously differentiable, strictly convex and ra-
dially unbounded in zi ∈R for any fixed z–i ∈ R

N–1.

Assumption 2 The pseudogradient F is l-strongly mono-
tone and l̄-Lipschitz for two constants l, l̄ > 0.

These assumptions have been used in [17] and [21]. Un-
der these assumptions, our game G admits a unique Nash
equilibrium z∗ which can be characterized by the equation
F(z∗) = 0 according to Propositions 1.4.2 and 2.2.7 in [28].

In a full-information scenario when agents can have ac-
cess to all the other agents’ decisions, a typical gradient-
play rule

żi = –
∂Ji

∂zi
(zi, z–i), i ∈N

can be used to compute this Nash equilibrium z∗. In this
paper, we are more interested in distributed designs and
assume that each agent only knows the decisions of a sub-
set of all agents during the phase of computation.

For this purpose, a weighted digraph G = (N ,E ,A) is
used to describe the information sharing relationships
among the agents with node set N and weight matrix
A ∈ R

N×N . If agent i can get the information of agent j,
then there is a directed edge from agent j to agent i in the

graph with weight aij > 0. Note that agent i may not have
the full-information of z–i except the case with a complete
communication graph. Thus, we have a noncooperative
game with incomplete partial information. This makes the
classical gradient-play rule unimplementable.

To tackle this issue, a consensus-based rule has been
developed in [17] and each agent is required to estimate
all other agents’ decisions and implement an augmented
gradient-play dynamics:

żi = –
N∑

j=1

aij
(
zi – zj) – Ri∇iJi

(
zi), (1)

where Ri = col(0i–1, 1, 0N–i) and zi = col(zi
1, . . . , zi

N ). Here
zi ∈R

N represents agent i’s estimate of all agents’ decisions
with zi

i = zi and zi
–i = col(zi

1, . . . , zi
i–1, zi

i+1, . . . , zi
N ). Function

∇iJi(zi) = ∂Ji
∂zi

i
(zi

i, zi
–i) is the partial gradient of agent i’s cost

function evaluated at the local estimate zi.
For convenience, we define an extended pseudogradient

as F(z) = col(∇1J1(z1), . . . ,∇N JN (zN )) ∈R
N for this game G.

The following assumption on this extended pseudogradi-
ent F was made in [17]:

Assumption 3 The extended pseudogradient F is lF -
Lipschitz with lF > 0.

Let l = max{l̄, lF}. According to Theorem 2 in [17], along
the trajectory of system (1), zi(t) will exponentially con-
verge to z∗ as t goes to +∞ if graph G is undirected and
satisfies a strong coupling condition of the form: λ2 > l2

l + l.
Note that the coupling condition might be violated in ap-
plications for a given game and undirected graph (since
the scalars λ2 and l2

l + l are both fixed). Although the au-
thors in [17] further relaxed this connectivity condition by
some singular perturbation technique, the derived results
are still limited to undirected graphs.

In this paper, we assume that the information sharing
graph is directed and satisfies the following condition:

Assumption 4 Digraph G is strongly connected.

The main goal of this paper is to exploit the basic idea
of algorithm (1) and develop effective distributed variants
to solve this problem for digraphs under Assumption 4
including undirected connected graphs as a special case.
Since the information flow might be asymmetric in this
case, the resultant equilibrium seeking problem is thus
more challenging than the undirected case.

4 Main result
In this section, we first solve our Nash equilibrium seeking
problem for the weight-balanced digraphs and then extend
the derived results to general strongly connected ones with
unbalanced weights.
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4.1 Weight-balanced graph
To begin with, we make the following extra assumption:

Assumption 5 Digraph G is weight-balanced.

Motivated by algorithm (1), we propose a modified ver-
sion of gradient-play rules for game G as follows:

żi = –α

N∑

j=1

aij
(
zi – zj) – Ri∇iJi

(
zi), (2)

where Ri, zi are defined as above and α > 0 is a constant to
be specified later. Putting it into a compact form, we have

ż = –αLz – RF(z), (3)

where z = col(z1, . . . , zN ), R = diag(R1, . . . , RN ) and L = L ⊗
IN with the extended pseudogradient F(z).

Different from algorithm (1) and its singularly perturbed
extension presented in [17], we add an extra parameter α

to increase the gain of the proportional term Lz. With this
gain being large enough, the effectiveness of algorithm (3)
is shown as follows:

Theorem 1 Suppose Assumptions 1–5 hold. Let α > 1
λ2

( l2
l +

l). Then, for any i ∈ N , along the trajectory of system (3),
zi(t) exponentially converges to z∗ as t goes to +∞.

Proof We first show that at the equilibrium of system (3),
zi indeed reaches the Nash equilibrium of game G. In fact,
letting the righthand side of (2) be zero, we have αLz∗ +
RF(z∗) = 0. Premultiplying both sides by 1�

N ⊗ IN gives

0 = α
(
1�

N ⊗ IN
)
(L ⊗ IN )z∗ +

(
1�

N ⊗ IN
)
RF

(
z∗).

Using 1�
N L = 0 gives 0 = (1�

N ⊗ IN )RF(z∗). By the notation of
R and F, we have F(z∗) = 0. This further implies that Lz∗ =
0. Recalling the property of L under Assumption 4, one can
determine some θ ∈ R

N such that z∗ = 1 ⊗ θ . This means
F(1⊗θ ) = 0 and thus ∇iJi(θi, θ–i) = 0, or equivalently, F(θ ) =
0. That is, θ is the unique Nash equilibrium z∗ of G and
z∗ = 1 ⊗ z∗.

Next, we show the exponential stability of system (3) at
its equilibrium z∗ = 1 ⊗ z∗. For this purpose, we denote
z̃ = z – z∗ and perform the coordinate transformation z̄1 =
(M�

1 ⊗ IN )z̃ and z̄2 = (M�
2 ⊗ IN )z̃. It follows that

˙̄z1 = –
(
M�

1 ⊗ IN
)
R
,

˙̄z2 = –α
[(

M�
2 LM2

) ⊗ IN
]
z̄2 –

(
M�

2 ⊗ IN
)
R
,

where 
 � F(z) – F(z∗).

Let V (z̄1, z̄2) = 1
2 (‖z̄1‖2 + ‖z̄2‖2). Then its time derivative

along the trajectory of system (3) satisfies that

V̇ = –z̄�
1
(
M�

1 ⊗ IN
)
R
 – z̄�

2
(
M�

2 ⊗ IN
)
R


– αz̄�
2
{[

M�
2 LM2

] ⊗ IN
}

z̄2

= –z̃�R
 – αz̄�
2
[(

M�
2 Sym(L)M2

) ⊗ IN
]
z̄2

≤ –αλ2‖z̄2‖2 – z̃�R
. (4)

Since z̃ = (M1 ⊗ IN )z̄1 + (M2 ⊗ IN )z̄2 � z̃1 + z̃2, we split z̃
into two parts to estimate the above cross term and obtain
that

–z̃�R
 = (z̃1 + z̃2)�R
[

F
(
z̃1 + z̃2 + z∗) – F

(
z∗)]

= –z̃�
1 R

[
F
(
z̃1 + z̃2 + z∗) – F

(
z̃1 + z∗)]

– z̃�
2 R

[
F
(
z̃1 + z̃2 + z∗) – F

(
z̃1 + z∗)]

– z̃�
1 R

[
F
(
z̃1 + z∗) – F

(
z∗)]

– z̃�
2 R

[
F
(
z̃1 + z∗) – F

(
z∗)].

As we have F(1N ⊗ y) = F(y) for any y ∈ R
N , it follows by

the strong monotonicity of F that

z̃�
1 R

[
F
(
z̃1 + z∗) – F

(
z∗)]

=
z̄�

1√
N

[

F
(

1 ⊗
(

z̄1√
N

+ y∗
))

– F
(
1 ⊗ y∗)

]

=
z̄�

1√
N

[

F
(

y∗ +
z̄1√
N

)

– F
(
y∗)

]

≥ l
N

‖z̄1‖2,

where we use the identity (1� ⊗ IN )R = IN and z̃�
1 R = z̄�

1√
N .

Note that ‖R‖ = ‖M2‖ = 1 by definition. This implies that
‖R�z̃2‖ ≤ ‖z̃2‖ = ‖z̄2‖. Then, under Assumptions 2 and 3,
we have

–z̃�R
 ≤ 2l√
N

‖z̄1‖‖z̄2‖ + l‖z̄2‖2 –
l

N
‖z̄1‖2. (5)

Bringing inequalities (4) and (5) together gives

V̇ ≤ –
l

N
‖z̄1‖2 – (αλ2 – l)‖z̄2‖2 +

2l√
N

‖z̄1‖‖z̄2‖

= –
[‖z̄1‖ ‖z̄2‖

]
Aα

[‖z̄1‖
‖z̄2‖

]

(6)

with Aα =
[ l

N – l√
N

– l√
N

αλ2–l

]
. When α > 1

λ2
( l2

l + l), matrix Aα is

positive definite. Thus, there exists a constant ν > 0 such
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that

V̇ ≤ –νV .

Recalling Theorem 4.10 in [29], one can conclude the ex-
ponential convergence of z(t) to z∗, which implies that zi(t)
converges to z∗ as t goes to +∞. The proof is thus com-
plete. �

Remark 1 Algorithm (3) is a modified version of the
gradient-play dynamics (1) with an adjustable propor-
tional control gain α. The criterion to choose α clearly
presents a natural trade-off between the control efforts and
graph algebraic connectivity. By choosing a large enough
α, this theorem ensures the exponential convergence of
all local estimates to the Nash equilibrium z∗ over weight-
balanced digraphs and also provides an alternative way to
remove the restrictive graph coupling condition presented
in [17].

4.2 Weight-unbalanced graph
In this subsection, we aim to extend the preceding design
to general strongly connected digraphs. In the following,
we first modify (3) to ensure its equilibrium as the Nash
equilibrium of game G, and then implement it in a dis-
tributed manner by adding a graph imbalance compen-
sator.

At first, we assume that a left eigenvector of the Lapla-
cian L associated with the trivial eigenvalue is known and
denoted by ξ = col(ξ1, . . . , ξN ), i.e., ξ�L = 0. Without loss of
generality, we assume ξ�1 = 1. Then, ξ is componentwise
positive by Theorem 4.16 in Chap. 6 of [30]. Here we use
this vector ξ to correct the graph imbalance in system (2)
as follows:

żi = –αξi

N∑

j=1

aij
(
zi – zj) – Ri∇iJi

(
zi). (7)

Similar ideas can be found in [14] and [31]. We put this
system into a compact form

ż = –αL
z – RF(z), (8)

where 
 = diag(ξ1, . . . , ξN ) and L
 = 
L⊗ IN . It can be eas-
ily verified that 
L is the associated Laplacian of a new di-
graph G ′, which has the same connectivity topology as di-
graph G but with scaled weights, i.e., a′

ij = ξiaij for any i, j ∈
N . As this new digraph G ′ is naturally weight-balanced, we
denote λ′

2 as the minimal positive eigenvalue of Sym(
L).
Here is an immediate consequence of Theorem 1.

Lemma 1 Suppose Assumptions 1–4 hold and let α >
1
λ′

2
( l2

l + l). Then, for any i ∈N , along the trajectory of system
(8), zi(t) exponentially converges to z∗ as t goes to +∞.

Note that the aforementioned vector ξ is usually un-
known to us for general digraphs. To implement our al-
gorithm, we embed a distributed estimation rule of ξ into
system (7) as follows:

ξ̇
i = –

N∑

j=1

aij
(
ξ i – ξ j), (9)

where ξ i = col(ξ i
1, . . . , ξ i

N ) with ξ i
i (0) = 1 and ξ i

j = 0 for any
j �= i ∈N .

Here the diffusion dynamics of ξ i is proposed to estimate
the eigenvector ξ by col(ξ 1

1 , . . . , ξN
N ). The following lemma

shows the effectiveness of (9).

Lemma 2 Suppose Assumption 4 holds. Then, along the
trajectory of system (9), ξ i

i (t) > 0 for any t ≥ 0 and expo-
nentially converges to ξi as t goes to +∞.

Proof Note that the matrix –L is essentially nonnegative
in the sense that κI – L is nonnegative for all sufficiently
large constant κ > 0. Under Assumption 4, matrix –L is
also irreducible. By Theorem 3.12 in Chap. 6 of [30], the
matrix exponential exp(–Lt) is componentwise positive for
any t ≥ 0. As the evolution of ξ i = col(ξ 1

i , . . . , ξN
i ) is gov-

erned by ξ̇ i = –Lξ i with initial condition ξ i(0) = col(0, 1, 0).
Thus, ξ i(t) = exp(–Lt)ξ i(0) > 0 for any t. By further using
Theorems 1 and 3 in [12], we have that ξ i

i (t) exponen-
tially converges to the value ξ ∗

i = ξi∑N
j=1 ξj

for any i ∈ N as

t goes to +∞. Since ξ = col(ξ1, . . . , ξN ) is a left eigenvector
of L associated with eigenvalue 0, one can easily verify that
ξ ∗�L = 0. Under Assumption 4, 0 is a simple eigenvalue of
L. Then, there must be a constant c �= 0 such that ξ = cξ ∗.
Note that ξ�1 = ξ ∗�1 = 1. One can conclude that c = 1 and
thus complete the proof. �

The whole algorithm to seek the Nash equilibrium is pre-
sented as follows:

żi = –αξ i
i

N∑

j=1

aij
(
zi – zj) – Ri∇iJi

(
zi),

ξ̇
i = –

N∑

j=1

aij
(
ξ i – ξ j)

(10)

with ξ i
i (0) = 1 and ξ i

j = 0 for any j �= i ∈N .
Bringing Lemmas 1 and 2 together, we provide the sec-

ond main theorem of this paper.

Theorem 2 Suppose Assumptions 1–4 hold and let α >
1
λ′

2
( l2

l + l). Then, for any i ∈N , along the trajectory of system
(10), zi(t) exponentially converges to z∗ as t goes to +∞.
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Proof First, we put the algorithm into a compact form:

ż = –αL
′z – RF(z),

ξ̇ = –Lξ ,
(11)

where L
′ = 
′L ⊗ IN and 
′ = diag(ξ 1
1 , . . . , ξN

N ). From this,
one can further find that the composite system consists of
two subsystems in a cascaded form as follows:

ż = –αL
z – RF(z) – α
[
(

L) ⊗ IN

]
z,

ξ̇ = –Lξ ,

where L
 is defined as in (8) and 

 = 
′ – 
. Note
that the term α[(

L) ⊗ IN ]z can be upper bounded by
γp exp(–βpt)‖z‖ for some positive constants γp and βp ac-
cording to Lemma 2. By viewing α[(

L) ⊗ IN ]z as a van-
ishing perturbation of the upper subsystem, the unper-
turbed z-subsystem is globally exponentially stable at its
equilibrium z∗ = 1N ⊗ z∗ by Lemma 1. Recalling Corollary
9.1 in [29], the whole algorithm (11) is globally exponen-
tially stable at its equilibrium. This implies that along the
trajectory of system (11), zi(t) exponentially converges to
z∗ as t goes to +∞. The proof is thus complete. �

Remark 2 In contrast to the algorithm (2) with propor-
tional gains in Theorem 1, this new rule (10) further in-
cludes a distributed left eigenvector estimator to compen-
sate the imbalance of the graph Laplacian. Compared with
those equilibrium seeking results in [15, 17, 18] for undi-
rected graphs, the proportional control and graph imbal-
ance compensator together facilitate us to solve this prob-
lem for strongly connected digraphs including undirected
graphs as its special case.

5 Simulation
In this section, we present an example to verify the ef-

fectiveness of our designs.
Consider an eight-player noncooperative game. Each

player has a pay-off function of the form Ji(xi, x–i) = cixi –
xif (x) with x = col(x1, . . . , x8) and f (x) = D –

∑8
i=1 xi for

a constant D > 0. Suppose the communication topology
among the agents is depicted by a digraph in Fig. 1 with

Figure 1 Digraph G in our example

Figure 2 Profile of ξ i
i (t) in our example

Figure 3 Profile of zi(t) in our example with α = 2

all weights as one. The Nash equilibrium of this game
can be analytically determined as z∗ = col(z1, . . . , zn) with
z∗

i = 46 – 4 ∗ i.
Since the communication graph is directed and weight-

unbalanced, the gradient-play algorithm developed in [17]
might fail to solve the problem. At the same time, Assump-
tions 1–4 can be easily confirmed. Then we can resort to
Theorem 2 and use algorithm (10) to seek the Nash equi-
librium in this eight-player noncooperative game.

For simulations, let ci = 4i and D = 270. We sequen-
tially choose α = 2 and α = 10 for algorithm (10). Since
the righthand side of our algorithm is Lipschitz, we con-
duct the simulation via the forward Euler method with
a small step size [32]. The simulation results are shown
in Figs. 2–4. From Fig. 2, one can find that the estimate
ξ (t) converges quickly to the left eigenvector of the graph
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Figure 4 Profile of zi(t) in our example with α = 10

Figure 5 Profile of ηi(t) in our example with α = 10

Laplacian ξ = col(4, 4, 3, 2, 2, 1, 1, 1)/18. At the same time,
col(z1(t), . . . , z8(t)) approaches the Nash equilibrium z∗ of
this game for different proportional parameters. More-
over, a larger proportional gain α is observed to imply a
faster rate of convergence. We also show the profile of
ηi(t) � t2(zi(t) – z∗

i ) in Fig. 5 to confirm the exponential
convergence rate when α = 10. These results verify the ef-
fectiveness of our designs in resolving the Nash equilib-
rium seeking problem over general strongly connected di-
graphs.

6 Conclusion
Nash equilibrium seeking problem over directed graphs
has been discussed with consensus-based distributed
rules. By selecting some proper proportional gains and
embedding a distributed graph imbalance compensator,
the expected Nash equilibrium is shown to be reached ex-

ponentially fast over general strongly connected digraphs.
In the future, we may use the adaptive high-gain tech-
niques as in [21, 33] to extend the results to fully dis-
tributed versions. Another interesting direction is to in-
corporate high-order agent dynamics and nonsmooth cost
functions.
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