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Optimal Output Consensus for Nonlinear Multiagent Systems With Both
Static and Dynamic Uncertainties

Yutao Tang and Xinghu Wang

Abstract—In this article, we investigate an optimal output con-
sensus problem for heterogeneous uncertain nonlinear multiagent
systems. The considered agents are described by high-order non-
linear dynamics subject to both static and dynamic uncertainties.
A two-step design, comprising sequential constructions of optimal
signal generator and distributed partial stabilization feedback con-
troller, is developed to overcome the difficulties brought by nonlin-
earities, uncertainties, and optimal requirements. This article can
not only assure an output consensus, but also achieve an optimal
agreement characterized by a distributed optimization problem.

Index Terms—Adaptive control, distributed optimization, multia-
gent system, optimal output consensus, uncertainties.

I. INTRODUCTION

In the past few years, distributed optimization has attracted much
attention due to its broad potential applications in multirobot systems,
smart grid, and sensor networks. In a typical setting, each agent has
access to a private objective function and all agents are regulated to
achieve a consensus on the optimal solution of the sum of all local
functions. Many important results were obtained based on gradients or
subgradients of the local objective functions combined with consensus
rules, including both discrete-time and continuous-time algorithms
[1]–[6].

Since distributed optimization tasks may be implemented or de-
pend on physical dynamics in practice, optimal consensus involving
high-order agent dynamics deserves further investigation. Compared
with the pure (output) consensus problem, the consensus point for all
outputs of agents is additionally required to be an optimal solution
of the global cost function. Note that this optimal solution can only be
determined and reached in a distributed way. Some interesting attempts
have been made in [7]–[9] for integrator agents, [10] for linear agents,
and [11], [12] for special classes of nonlinear agents. However, optimal
output consensus for more general nonlinear multiagent systems is still
far from being solved, especially for agents being heterogeneous and
subject to uncertainties.
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In this article, we consider nonlinear multiagent systems in the
Byrnes–Isidori normal form, which can model many typical mechanical
and electromechanical systems [13]. In the literature, there have been
many consensus results for agents of this type (e.g., [14]–[16]). This
normal form is general enough to cover the dynamics reported in
existing optimal consensus results [7]–[12], [17], [18]. Here, we further
take into account heterogeneous nonlinear dynamics having both static
and dynamic uncertainties, which inevitably bring technical difficulties
in resolving the optimal output consensus problem. In a preliminary
work [19], this problem was studied for such class of agents assuming
that the compact set containing static uncertainties is prior known. In
this article, we remove such restrictive condition and allow the boundary
of this compact set to be unknown.

The contribution of this article is at least twofold. First, we solve
the optimal output consensus problem for a larger class of uncertain
nonlinear multiagent systems, significantly improving the existing
results reported in [9]–[12]. Second, a novel dynamic compensator
based distributed controller is developed for effectively addressing
complicated uncertainties, while the precise information of system
dynamics is required in [7]–[9]. Moreover, in contrast with relevant
results in [11] and [19], the boundary of the compact set containing
uncertain parameters is allowed to be unknown.

The rest of this article is organized as follows. Preliminaries and
problem formulation are presented in Section II. Then, the design
scheme and main results are provided in Sections III and IV with
an illustrative example in Section V. Finally, conclusions are given
in Section VI.

Notation: Let RN be the N -dimensional Euclidean space. Denote
col(a1, . . . , aN ) = [aᵀ1, . . . , a

ᵀ
N ]

ᵀ for vectors a1, . . . , aN . 1N (or
0N ) denotes an all-one (or all-zero) vector in R

N and IN denotes
the N ×N identity matrix. Let M1 = 1√

N
1N and M2 be the ma-

trices satisfying Mᵀ
2M1 = 0N−1, Mᵀ

2M2 = IN−1, and M2M
ᵀ
2 =

IN −M1M
ᵀ
1 . Denote the Euclidean norm of vector a by ||a|| and

the spectral norm of matrix A by ||A||. A continuous function α :
[0, +∞) → [0, +∞) belongs to class K if it is strictly increasing and
α(0) = 0. It further belongs to class K∞ if it belongs to class K and
lims→∞ α(s) = ∞.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we present preliminaries of partial stability and graph
theory, and then the formulation of our problem.

A. Partial Stability

To achieve optimal output consensus, we need to ensure the con-
vergence of particular partial state of the closed-loop system rather
than the full state. Such an issue is often referred to as partial stability
(stabilization) [20]. Since the closed-loop system may have a continuum
of equilibria, we introduce a modified version of partial stability as
follows.
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Consider the nonlinear autonomous system

ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2) (1)

where x = col(x1, x2) with x1 ∈ R
nx1 , x2 ∈ R

nx2 and the functions
f1, f2 are sufficiently smooth. Denote the equilibria set as D � {x |
f1(x1, x2) = 0, f2(x1, x2) = 0}.

Definition 1: System (1) is Lyapunov semistable with respect to x1
(or briefly, x1-semistable) at x�1 if, for every ε > 0, there exist x�2 and
δ > 0 such that x� = col(x�1, x

�
2) ∈ D and ||x(0)− x�|| < δ implies

||x1(t)− x�1|| ≤ ε for all t ≥ 0. If for any x(0), it further holds that
limt→+∞ ||x1(t)− x�1|| = 0, this system is globally asymptoticallyx1-
semistable at x�1.

WhenD = {0}, this definition is exactly the partial stability concept
with respect to x1 specified in [20, p. 17]. The following lemma is
slightly modified from [21, Ths. 4.5 and 4.7] and its proof is omitted.

Lemma 1: Suppose that there exist a continuously differentiable
function V (x) and a constant vector x�2 ∈ R

nx2 such that x� =
col(x�1, x

�
2) ∈ D, and along the trajectory of (1),

α(||x− x�||) ≤ V (x) ≤ β(||x− x�||)
V̇ (x) ≤ −γ(||x1 − x�1||)

for some functions α, β ∈ K∞ and γ ∈ K. Then, system (1) admits
well-defined bounded trajectories over [0, +∞) and is globally asymp-
totically x1-semistable at x�1.

B. Graph Notion

A weighted directed graph (digraph) is described by G = (N , E ,A)
with node set N = {1, . . ., N} and edge set E . (i, j) ∈ E denotes
an edge from node i to node j. The weighted adjacency matrix
A = [aij ] ∈ R

N×N is defined by aii = 0 and aij ≥ 0. Here, aij > 0
iff there is an edge (j, i) in the digraph. Node i’s neighbor set is
defined as Ni = {j | (j, i) ∈ E}. We denote N 0

i = Ni ∪ {i}. A di-
rected path is an alternating sequence i1e1i2e2. . .ek−1ik of nodes il and
edges em = (im, im+1) ∈ E for l = 1, 2, . . ., k. If there is a directed
path between any two nodes, then the digraph is said to be strongly
connected. The in-degree and out-degree of node i are defined by
din
i =

∑N
j=1 aij and dout

i =
∑N
j=1 aji. A digraph is weight-balanced if

din
i = dout

i for any i ∈ N . The Laplacian ofG is defined asL � Din −A
withDin = diag(din

1 , . . . , d
in
N ). Note that L1N = 0N for any digraph.

If this digraph is weight-balanced, we have 1ᵀ
NL = 0ᵀ

N and matrix
Sym(L) � L+Lᵀ

2
is positive semidefinite. For a weight-balanced and

strongly connected digraph, we can order the eigenvalues of Sym(L)
as 0 = λ1 < λ2 ≤ · · · ≤ λN and have λ2IN−1 ≤Mᵀ

2 Sym(L)M2 ≤
λNIN−1 (see [22], for more details).

C. Problem Formulation

Consider a group of nonlinear systems modeled by

żi = hi(zi, yi, w)

ẋi = Aixi +Bi[gi(zi, xi, w) + bi(w)ui]

yi = Cixi, i = 1, . . . , N (2)

where col(zi, xi) is the state with xi = col(xi1, . . . , xini
) ∈ R

ni and
zi ∈ R

mi , ui ∈ R is the input, yi ∈ R is the output, and w ∈ W ⊂
R
nw with W being compact and containing the origin. The triplet

(Ci, Ai, Bi) represents a chain of ni integrators in canonical form,

that is,

Ai =

[
0ni−1 Ini−1

0 0ᵀ
ni−1

]
, Bi =

[
0ni−1

1

]
, Ci =

[
1

0ni−1

]ᵀ
.

Here w and zi represent static and dynamic uncertainties of agent
i, respectively. Different from [19], the compact set W containing
the static uncertainties is not necessarily known here. It is assumed
that all functions are sufficiently smooth and satisfy hi(0, 0, w) = 0,
gi(0, 0, w) = 0, bi(w) ≥ b0 > 0 for all w ∈ W with some constant
b0.

We endow each agent output with a local cost function fi : R → R,
and define the global cost function as the sum of all local costs, i.e.,
f(y) =

∑N
i=1 fi(y). For multiagent system (2), we aim to develop

an algorithm such that all agent outputs achieve a consensus on the
minimizer to this global cost function in a distributed fashion. For this
purpose, a digraph G = (N , E , A) is used to describe the informa-
tion communication relationships among agents with node set N =
{1, . . . , N}, edge set E ⊂ N ×N , and weighted matrix A ∈ R

N×N .
An edge (j, i) ∈ E with weight aij > 0 means that agent i can get the
information of agent j.

The considered distributed controller is described by

ui = Ξi1(∇fi, xj , χj , j ∈ N 0
i )

χ̇i = Ξi2(∇fi, xj , χj , j ∈ N 0
i ) (3)

where χi ∈ R
qi is the compensator state and Ξi1, Ξi2 are smooth

functions to be specified later. With these preparations, we formulate
our problem explicitly as follows.

Problem 1: For multiagent system (2), function fi, digraph G, and
compact set W, find a controller of the form (3) such that, for eachw ∈
W and each initial condition col(zi(0), xi(0), χi(0)) ∈ R

mi+ni+qi ,
a) the trajectory of the closed-loop system composed of (2) and (3)

exists and is bounded over [0, +∞);
b) the outputs of agents satisfy limt→+∞ |yi(t)− y�| = 0 with y�

being optimal solution of

min
y∈R

f(y) =

N∑
i=1

fi(y). (4)

Remark 1: Compared to existing output consensus results [14]–
[16], this problem further requires the outputs of agents to reach an
agreement on the optimal point y� specified by minimizing a cost
function. In this sense, we say these agents achieving an optimal output
consensus as in [2], [8], and [9].

This problem for single integrators has been coined as distributed
optimization and investigated for many years. For high-order nonlinear
agents, it is certainly more challenging to achieve such an optimal
output consensus, while the static and dynamic uncertainties bring extra
technical difficulties in resolving this problem.

III. TWO-STEP DESIGN SCHEME

In this section, we convert the optimal output consensus problem
into a distributed partial stabilization problem by constructing optimal
signal generators, giving rise to a two-step design scheme for solving
Problem 1.

To begin with, several standing assumptions are listed.
Assumption 1: The digraph G is weight-balanced and strongly

connected.
Assumption 2: For each i ∈ N , the function fi is twice continu-

ously differentiable and satisfies that li ≤ ∇2fi(s) ≤ li with constants
0 < li ≤ li < +∞ for all s ∈ R.
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Assumption 3: For each i ∈ N , there exists a smooth function
z�i (s, w) satisfying z�i (0, w) = 0 and hi(z�i (s, w), s, w) = 0 for all
s ∈ R and w ∈ R

nw .
Assumption 1 guarantees that each agent’s information can be

reached by any other agent. Assumption 2 implies the existence and
uniqueness of optimal solution to problem (4) [23]. Assumption 3 can
be interpreted as the solvability of regulator equations in the context
of output regulation [24]. These assumptions have been widely used
in (distributed) coordination for multiagent systems [3], [7], [11],
[25], [26].

Consider an optimal consensus problem for a group of single inte-
grators with the same optimal requirement (4)

ṙi = μi. (5)

If this auxiliary problem is solved by some chosen μi, we only need to
drive agent i to track the generated signal ri(t) to achieve the optimal
output consensus for agent (2).

Since the Laplacian L of digraph G is asymmetric, the generator
in [10] fails to reproduce y� without the information of Lᵀ. Motivated
by [18], we present a candidate of optimal signal generator for problem
(4) as follows:

μi = − α∇fi(ri)− β
N∑
j=1

aij(ri − rj)−
N∑
j=1

aij(vi − vj)

v̇i = αβ

N∑
j=1

aij(ri − rj) (6)

where α, β are constants to be specified later. Putting it into a compact
form gives

ṙ = − α∇f̃(r)− βLr − Lv, v̇ = αβLr (7)

where r = col(r1, . . . , rN ), v = col(v1, . . . , vN ), and function
f̃(r) �∑N

i=1
fi(ri) is l-strongly convex while its gradient ∇f̃(r) is

l-Lipschitz with l = maxi{li} and l = mini{li}.
Let col(r�, v�) be the equilibrium point of system (7). It is verified

that r� = 1Ny
� under Assumptions 1 and 2 by [23, Th. 3.27]. For (7),

we have the following interesting result.
Lemma 2: Suppose Assumptions 1–2 hold and let α ≥ max

{1, 1
l
, 2l

2

lλ2
}, β ≥ max{1, 1

λ2
,
6α2λ2

N
λ2
2

}. Then, system (7) admits well-

defined bounded trajectories over [0, +∞) and is globally asymptoti-
cally r-semistable at 1Ny�. Moreover, ri(t) approaches y� exponen-
tially as t→ +∞ for i ∈ N .

Proof: Briefly, we utilize Lemma 1 to complete the proof. Let
ML =Mᵀ

2LM2 and v� = −αM2M
−1
L Mᵀ

2∇f̃(r∗). It can be verified
that col(r�, v�) is an equilibrium of system (7).

Perform the coordinate transformation: r1 =Mᵀ
1 (r − r�), r2 =

Mᵀ
2 (r − r�), v1 =Mᵀ

1 (v − v�), and v2 =Mᵀ
2 [(v + αr)− (v� +

αr�)]. It follows that v̇1 = 0 and

ṙ1 = − αMᵀ
1Π

ṙ2 = − αMᵀ
2Π− βMLr2 + αMLr2 −MLv2

v̇2 = − αMLv2 + α2MLr2 − α2Mᵀ
2Π (8)

where Π � ∇f̃(r)−∇f̃(r�). Let r = col(r1, r2), and Vo(r, v) =
rᵀr + 1

α3 v
ᵀ
1v1 +

1
α3 v

ᵀ
2v2 in this new coordinate with α > 0 to be

specified later. The first inequality in Lemma 1 apparently holds. On
the other hand, by Young’s inequality, the time derivative of Vo along
the trajectory of (7) satisfies

V̇o = − 2α(r − r�)ᵀΠ+ 2rᵀ2[−βMLr2 + αMLr2 −MLv2]

+
2

α3
vᵀ2[−αMLv2 + α2MLr2 − α2Mᵀ

2Π]

≤ − 2αl||r||2 − 2βλ2||r2||2 + 2αλN ||r2||2 + 2λN ||r2||||v2||

− 2λ2

α2
||v2||2 + 2

α
λN ||r2||||v2||+ 2l

α
||v2||||r||

≤ −
(
2αl − 3l

2

λ2

)
||r||2 − λ2

α2
||v2||2

−
(
2βλ2 − 2αλN − 3α2λ2

N

λ2

− 3λ2
N

λ2

)
||r2||2

≤ −1

2
||r||2 − 1

2α3
||v2||2 �Wo(r, v2).

According to Lemma 1, we conclude the boundedness of all trajectories
over [0, +∞) and its r-semistability of system (7) at 1Ny�. By further
considering the reduced-order system (8) with a Lyapunov function
Wo(r, v2), one can obtain that Ẇo ≤ − 1

2
Wo along the trajectories

of (8). Recalling [13, Th. 4.10], Wo(r(t), v2(t)) and r(t) must
exponentially converge to 0 as tgoes to infinity. The proof is complete.�

Remark 2: The optimal signal generator (7) is a modified version of
the augmented Lagrangian method solving problem (4) in [18]. Here,
we add an extra parameter α to simplify both the synthesis and its
analysis. Compared with the results for digraphs in [8], [9], and [17],
our algorithm is initialization-free to generate the optimal point y∗.
This makes it possible to work in a scalable manner, which might be
favorable for dynamic networks with leaving-off and plugging-in of
agents.

Remark 3: In our design, we use the knowledge of λ2 and λN as that
in [7] and [25] to compensate the asymmetry of directed information
flows. It should be mentioned that these values can be computed by
existing algorithms beforehand, e.g., [27].

Under Assumption 3, we denote x�i (ri) = col(ri, 0ni−1),

u�i (ri, w) = − gi(z
�
i
(ri,w), x�

i
(ri),w)

bi(w)
and perform the coordinate

transformation: zi = zi − z�i (ri, w), xi = xi − x�i (ri). This leads
to an interconnected error system as follows:

żi = hi(zi, ei, ri, w)− ∂z�i
∂ri

μi

ẋi = Aixi +Bi[gi(zi, xi, ri, w)

+ bi(w)(ui − u�i (ri, w))]−Eiμi

ei = Cixi, i ∈ N (9)

where Ei = col(1, 0ni−1) and

hi(zi, ei, ri, w) = hi(zi, yi, w)− hi(z
�
i (ri, w), ri, w)

gi(zi, xi, ri, w) = gi(zi, xi, w)− gi(z
�
i (ri, w), x

�
i (ri), w).

It can be verified that hi(0, 0, ri, w) = 0, gi(0, 0, ri, w) = 0 for all
ri ∈ R and w ∈ R

nw .
Attaching the optimal signal generator (7) to error system (9) yields

an augmented system associated with Problem 1. A key lemma is
obtained to assist us in solving the optimal output consensus problem.

Lemma 3: Suppose Assumptions 1–3 hold and there exists a smooth
controller of the form

ui = Ξo
i1(xj , rj , χ

o
j , j ∈ N 0

i )

χ̇o
i = Ξo

i2(xj , rj , χ
o
j , j ∈ N 0

i ) (10)

solving the distributed partial stabilization problem of the augmented
system composed of (7) and (9) in the sense that the closed-loop system
composed of (7), (9), and (10) admits well-defined bounded trajectories
over [0, +∞) and is globally asymptotically ei-semistable at 0. Then,
Problem 1 can be solved by a controller composed of (6) and (10).
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Proof: Under the lemma condition, we can confirm that trajec-
tories of all agents are well-defined bounded over [0, +∞) and
limt→+∞ ei(t) = 0 for any initial condition col(zi(0), xi(0),
χo
i (0), r(0), v(0)). Note that |yi(t)− y�| ≤ |ei(t)|+ |ri(t)− y�| by

the triangle inequality. This together with Lemma 2 ensures that
limt→+∞ |yi(t)− y�| = 0. �

Remark 4: Based on Lemma 3, our optimal output consensus prob-
lem for multiagent system (2) is converted into a distributed partial sta-
bilization problem of certain interconnected augmented systems. As the
considered nonlinear multiagent system (2) is further subject to static
and dynamic uncertainties, the associated partial stabilization design
is more challenging than relevant results obtained in [9]–[12]. On the
other hand, existing designs presented in [20] and [21] are not applicable
for such complicated uncertainties and the partial stabilization problem
itself is nontrivial even for a single nonlinear system. Thus, we have
to seek a robust distributed partial stabilization design method for the
augmented systems.

IV. MAIN RESULT

In this section, we focus on the subsequent partial stabilization prob-
lem of the augmented system composed of (7) and (9) and eventually
solve the optimal output consensus problem for multiagent system (2).

To this end, we make an extra assumption imposing a mild minimum-
phase condition widely used in nonlinear stabilization problems [26],
[28], [29].

Assumption 4: For each i ∈ N , there exists a continuously differ-
entiable function Wiz(zi) such that, for all ri ∈ R and w ∈ W, along
the trajectory of system (9)

αi(||zi||) ≤Wiz(zi) ≤ αi(||zi||)
Ẇiz ≤ −αi(||zi||) + σieγie(ei)e

2
i + σiμγiμ(ri)μ

2
i (11)

for some known smooth functions αi, αi, αi ∈ K∞, γie, γir >
1, and unknown constants σie, σiμ > 1 with αi satisfying

lim sups→0+

α−1
i

(s2)

s
< +∞.

Due to the presence of uncertain parameter w, the feedforward term
u�i (ri, w) is unavailable for feedback. To tackle this issue, we introduce
a dynamic compensator as follows:

η̇i = −κi(ri)ηi + ui

whereκi(ri) > 0 is a smooth function to be specified later. Here,κi(ri)
is a scaling factor to handle nonlinear functions of ri. This compensator
reduces to an internal model when κi(ri) is constant [24].

Consider the error system (9). For ni ≥ 2, choose constants kij
such that the polynomial pi(λ) =

∑ni−1
j=1 kijλ

j−1 + λni−1 is Hur-

witz. Let ξi = col(xi1, . . . , xini−1), ζi =
∑ni−1
j=1 kijxij + xini

, and

βi(ηi, ri) � κi(ri)ηi. Performing coordinate and input transforma-

tions: ηi = ηi − u�
i
(ri,w)

κi(ri)
− b−1

i (w)ζi and ui = ui − βi(ηi, ri) gives
a composite system in the following form:

żi = hi(zi, ei, ri, w)− ∂z�i
∂ri

μi

ξ̇i = Ao
i ξi +Bo

i ζi −Eo
i μi

η̇i = − κi(ri)ηi + g̃i(zi, ξi, ζi, ri, w) + ψi(ri, w)μi

ζ̇i = ǧi(zi, ξi, ηi, ζi, ri, w) + bi(w)ui − ki1μi (12)

where

Ao
i =

[
0ni−2 Ini−2

−ki1 −ki2, . . . ,−kini−1

]

Bo
i =

[
0ni−2

1

]
, Eo

i =

[
1

0ni−2

]

g̃i = − 1

bi(w)
[ĝi(zi, ξi, ζi, ri, w) + κi(ri)ζi]

ψi =
u�i (ri, w)

κ2
i (ri)

∂κi(ri)

∂ri
− 1

κi(ri)

∂u�i (ri, w)

∂ri
+

ki1
bi(w)

ǧi = κi(ri)ζi + bi(w)κi(ri)ηi + ĝi(zi, ξi, ζi, ri, w)

ĝi = − kini−1ki1xi1 +

ni−1∑
j=2

(kij−1 − kini−1kij)xij

+ kini−1ζi + gi(zi, xi, ri, w).

It can be verified that ĝi(0, 0, 0, ri, w) = 0, g̃i(0, 0, 0, ri, w) = 0,
and ǧi(0, 0, 0, 0, ri, w) = 0 for all ri ∈ R and w ∈ R

nw . Denote
z̃i = col(zi, ξi) and ẑi = col(z̃i, ηi). For ni = 1, the ξi-subsystem
vanishes and we let z̃i = zi, ζi = xi1 for consistency.

According to [30, Lemma 11.1(iv)] and by completing the square,
there exist some known smooth functions φ̂0

i1, φ̂i2, φ̂i3 > 1 such that,
for all ri ∈ R and w ∈ W,

||ĝi(z̃i, ζi, ri, w)||2 ≤ φ̂0
i1(ri, w)[φ̂i2(z̃i)||z̃i||2 + φ̂i3(ζi)ζ

2
i ].

(13)

By [30, Lemma 11.1(i)], there exist some known smooth functions
φ̂i1, φ̂i4 > 1 and unknown constants ĉig , �̂iψ > 1 satisfying

φ̂0
i1(ri, w) ≤ ĉigφ̂i1(ri), ψ2

i (ri, w) ≤ �̂iψφ̂i4(ri). (14)

It follows that, for all ri ∈ R and w ∈ W,

||ĝi(z̃i, ζi, ri, w)||2 ≤ ĉigφ̂i1(ri)[φ̂i2(z̃i)||z̃i||2 + φ̂i3(ζi)ζ
2
i ]. (15)

Similarly, one can determine some known smooth functions
φ̌i1, φ̌i2, φ̌i3 > 1 and unknown constant čig > 1 such that, for all
ri ∈ R and w ∈ W,

||ǧi(ẑi, ζi, ri, w)||2 ≤ čigφ̌i1(ri)[φ̌i2(ẑi)||ẑi||2 + φ̌i3(ζi)ζ
2
i ]. (16)

We claim the ẑi-subsystem admits the following property.
Lemma 4: For each i ∈ N , let κi(ri) ≥ φ̂i1(ri) + 1. Then, there

exists a continuously differentiable function Wi(ẑi) such that, for all
ri ∈ R and w ∈ W, along the trajectory of (12)

α̂i(||ẑi||) ≤Wi(ẑi) ≤ α̂i(||ẑi||)
Ẇi(ẑi) ≤ −||ẑi||2 + σ̂iζ γ̂iζ(ζi, ri)ζ

2
i + σ̂iμγ̂iμ(μi, ri)μ

2
i

for some known smooth functions α̂i, α̂i ∈ K∞, γ̂iζ , γ̂iμ > 1, and
unknown constants σ̂iζ , σ̂iμ > 1.

The proof of Lemma 4 is put in the Appendix.
Motivated by [28], [29], we let ui = −θiρi(ζi, ri)ζi with θ̇i =

τi(ζi, ri). Here, ρi and τi are positive smooth functions to be specified
later and θi is a dynamic gain to handle the unknown boundaries of
static uncertainties. For simplicity, we set θi(0) = 0. The developed
partial stabilizer for the augmented system (7)–(9) is consequently

ui = − θiρi(ζi, ri)ζi + κi(ri)ηi

η̇i = − κi(ri)ηi + ui

θ̇i = τi(ζi, ri). (17)

It is of the form (10) and distributed in the sense of using each agent’s
own and neighboring information.

We are ready to present our main theorem.
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Theorem 1: Under Assumptions 1–4, there exist positive constants
α, β and smooth functions κi(ri), ρi(ζi, ri), τi(ζi, ri) such that
Problem 1 for multiagent system (2) is solved by a distributed controller
of the following form:

ui = − θiρi(ζi, ri)ζi + κi(ri)ηi

η̇i = − κi(ri)ηi + ui

θ̇i = τi(ζi, ri)

ṙi = − α∇fi(ri)− β

N∑
j=1

aij(ri − rj)−
N∑
j=1

aij(vi − vj)

v̇i = αβ
N∑
j=1

aij(ri − rj). (18)

Proof: Set α, β and κi(ri) as in Lemmas 2 and 4. By Lemma 3,
we are left to show the following closed-loop system admits well-
defined bounded trajectories for t ≥ 0 and is globally asymptotically
ei-semistable at 0

˙̂zi = ĥi(ẑi, ζi, ri, w, μi)

ζ̇i = ǧi(ẑi, ζi, ri, w)− θibi(w)ρi(ζi, ri)ζi − ki1μi

θ̇i = τi(ζi, ri)

ṙi = − α∇fi(ri)− β
N∑
j=1

aij(ri − rj)−
N∑
j=1

aij(vi − vj)

v̇i = αβ
N∑
j=1

aij(ri − rj) (19)

where function ĥi is determined by (12) and we simply denote
ǧi(ẑi, ζi, ri, w) � ǧi(zi, ξi, ηi, ζi, ri, w) to save notations.

The proof is divided into two steps.
Step 1: we consider the first three subsystems and seek certain

disturbance attenuation performance with μi as its disturbance by
choosing ρi and τi.

First, by Lemma 4, we apply the changing supply functions tech-
nique [31] and conclude that, for any given smooth function Δ̂i(ẑi) >
0, there exists a continuously differentiable functionW 1

i (ẑi) such that,
along the trajectory of (19),

α̂1
i (||ẑi||) ≤W 1

i (ẑi) ≤ α̂
1

i (||ẑi||)
Ẇ 1
i ≤ −Δ̂i(ẑi)||ẑi||2 + σ̂1

iζ γ̂
1
iζ(ζi, ri)ζ

2
i + σ̂1

iμγ̂
1
iμ(μi, ri)μ

2
i

for some known smooth functions α̂1
i , α̂

1

i ∈ K∞, γ̂1
iζ , γ̂

1
iμ > 1, and

unknown constants σ̂1
iζ , σ̂

1
iμ > 1.

Second, let Vi(ẑi, ζi, θi) = �̂iW
1
i (ẑi) + ζ2i + θ

2

i , where θi = θi −
Θi with Θi, �̂i > 0 to be specified later. It is positive definite and
radially unbounded, and moreover satisfies

V̇i ≤ − �̂i[Δ̂i(ẑi)||ẑi||2 − σ̂1
iζ γ̂

1
iζ(ζi, ri)ζ

2
i − σ̂1

iμγ̂
1
iμ(μi, ri)μ

2
i ]

+ 2ζi[ǧi(ẑi, ζi, ri, w)− θibi(w)ρi(ζi, ri)ζi − ki1μi]

+ 2(θi −Θi)τi(ζi, ri).

Recalling inequality (16), we complete the square and have

V̇i ≤ − [�̂iΔ̂i(ẑi)− čigφ̌i2(ẑi)]||ẑi||2 − [2θibi(w)ρi(ζi, ri)

− φ̌i1(ri)− �̂iσ̂
1
iζ γ̂

1
iζ(ζi, ri)− čigφ̌i3(ζi)− 1]ζ2i

+ [�̂iσ̂
1
iμγ̂

1
iμ(μi, ri) + k2i1]μ

2
i + 2(θi −Θi)τi(ζi, ri).

Choosing

�̂i ≥ čig, Δ̂i(ẑi) ≥ φ̌i2(ẑi) + 1

ρi(ζi, ri) ≥ γ̂1
iζ(ζi, ri) + φ̌i1(ri) + φ̌i3(ζi) + 2

τi(ζi, ri) = ρi(ζi, ri)ζ
2
i , Θi ≥ 1

2b0
max{�̂iσ̂1

iζ , čig} (20)

gives V̇i ≤ −||ẑi||2 − ζ2i + [�̂iσ̂
1
iμγ̂

1
iμ(μi, ri) + k2i1]μ

2
i . By Lemma 2

and the smoothness of γ̂1
iμ, there exists a constant ciμ > 0 satisfying

�1i σ̂
1
iμγ̂

1
iμ(μi, ri) + k2i1 ≤ ciμ, which further implies

V̇i ≤ −||ẑi||2 − ζ2i + ciμμ
2
i .

Step 2: we show that the closed-loop system (19) admits well-
defined bounded trajectories for t > 0 and is globally asymptotically
ei-semistable at 0.

Note that the equilibria set of (19) is specified by D = {col
(ẑ, ζ, θ, r, v) | ẑ = 0, ζ = 0, r = 1Ny

�, v = v� + lv1N} with an
arbitrary constant lv . For ei = 0, we set Θ� = col(Θ1, . . . , ΘN ) and
verify that col(0, 0, Θ�, 1Ny�, v�) is an equilibrium of system (19).

From the Proof of Lemma 2, we know that the function
Wo(r, v2) defined thereof satisfies �1||col(r, v2)||2 ≤Wo(r, v2) ≤
�2||col(r, v2)||2 and Ẇo ≤ −�3||col(r, v2)||2 for some constants
�1, �2, �3 > 0. Due to the Lipschitzness of Π in r, μi is also Lip-
schitz in col(r, v2). Thus, there exists a constant �4 > 0 such that∑N
i=1 ciμμ

2
i ≤ �4�3||col(r, v2)||2.

Let V =
∑N
i=1 Vi + �4Vo with Vo defined in the proof of Lemma 2.

The first condition in Lemma 1 is verified. Taking the time derivative
of V along the trajectory of (19) gives

V̇ ≤ − ||ẑ||2 − ζ2 +
N∑
i=1

ciμμ
2
i − �4�3||col(r, v2)||2

≤ − ||ẑ||2 − ζ2.

This implies the second inequality in Lemma 1. Overall, the function
V indeed satisfies the conditions in Lemma 1. This guarantees the
trajectory’s boundedness over [0, +∞) and the global asymptotic ei-
semistability of system (19) at 0. By Lemma 3, we complete the proof.�

Remark 5: The developed optimal consensus control (18) is of a
high-gain type to handle the uncertainties. The parameters and functions
can be sequentially constructed. First, we choose α, β according to
Lemma 2. Then, we choose κi according to Lemma 4. Finally, we
choose ρi, τi to satisfy (20).

In some case, set W or at least its boundary might be known to us.
Of course, we can still use the controller (18) to solve this problem. But
we can further construct a simpler controller based on the information
of W. To this end, it is reasonable to introduce a new assumption to
replace Assumption 4.

Assumption 5: For each i ∈ N , there exists a continuously differ-
entiable function Wiz(zi) such that, for all ri ∈ R and w ∈ W, along
the trajectory of system (9)

αi(||zi||) ≤Wiz(zi) ≤ αi(||zi||)
Ẇiz ≤ −αi(||zi||) + γie(ei)e

2
i + γiμ(ri)μ

2
i (21)

for some known smooth functions αi, αi, αi ∈ K∞, γie, γiμ > 1 with

αi satisfying lim sups→0+
α−1
i

(s2)

s < +∞.
In this case, we propose a reduced-order controller:

ui = − ρi(ζi, ri)ζi + κi(ri)ηi

η̇i = − κi(ri)ηi + ui
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ṙi = − α∇fi(ri)− β
N∑
j=1

aij(ri − rj)−
N∑
j=1

aij(vi − vj)

v̇i = αβ
N∑
j=1

aij(ri − rj). (22)

The optimal output consensus problem can be solved by this new
controller as shown in the following theorem.

Theorem 2: Under Assumptions 1–3 and 5, there exist positive
constants α, β and positive smooth functions κi(ri), ρi(ζi, ri) such
that Problem 1 for multiagent system (2) is solved by a distributed
controller of the form (22).

Proof: The proof is similar as that of Theorem 1, and we only
provide some brief arguments.

First, by similar arguments as that in the proof of Lemma 4, we can
show that, for each i ∈ N , there exist a smooth function κi(ri) > 0
and a continuously differentiable function Wi(ẑi) such that, along the
trajectory of system (12),

α̂i(||ẑi||) ≤Wi(ẑi) ≤ α̂i(||ẑi||)
Ẇi ≤ −||ẑi||2 + γ̂iζ(ζi, ri)ζ

2
i + γ̂iμ(μi, ri)μ

2
i (23)

for some known smooth functions α̂i, α̂i ∈ K∞, γ̂iζ , γ̂iμ > 1.
Next, we apply the changing supply functions technique to the ẑi-

subsystem and conclude that, for any given smooth function Δ̂i(ẑi) >
0, there exists a continuously differentiable functionW 1

i (ẑi) such that,
along the trajectory of (12),

α̂1
i (||ẑi||) ≤W 1

i (ẑi) ≤ α̂
1

i (||ẑi||)
Ẇ 1
i ≤ −Δ̂i(ẑi)||ẑi||2 + γ̂1

iζ(ζi, ri)||ζi||2 + γ̂1
iμ(μi, ri)μ

2
i

for some known smooth functions α̂1
i , α̂

1

i ∈ K∞, γ̂1
iζ , γ̂

1
iμ > 1.

Let V̂i(ẑi, ζi) =W 1
i (ẑi) + ζ2i . By [30, Lemma 11.1] and complet-

ing the square, one can obtain that

˙̂
Vi ≤ − [Δ̂i(ẑi)− φ̌i2(ẑi)]||ẑi||2 + [γ̂1

iμ(μi, ri) + k2i1]μ
2
i

− [2bi(w)ρi(ζi, ri)− γ̂1
iζ(ζi, ri)− φ̌i1(ri)− φ̌i3(ζi)− 1]ζ2i

for some known smooth functions φ̌i1, φ̌i2, φ̌i3 > 1. Letting Δ̂i(ẑi) ≥
φ̌i2(ẑi) + 1, ρi(ζi, ri) ≥ 1

2b0
[γ̂1
iζ(ζi, ri) + φ̌i1(ri) + φ̌i3(ζi) + 2]

implies ˙̂
Vi ≤ −||ẑi|| − ζ2i + ĉiμμ

2
i for some constant ĉiμ > 0. Then,

the arguments of Step 2 in the proof of Theorem 1 proceed as well and
thus complete the proof. �

Since we are supposed to know the boundary of set W, no adaptive
component is needed in controller (22). In this case, the rest parameters
and functions can be derived in a similar way as mentioned in Remark 5.

Remark 6: The controllers (18) and (22) are both composed of two
parts constructed in two steps: optimal signal generator for problem (4)
and distributed partial stabilizer for the augmented system composed of
(7) and (9). By this two-step procedure and dynamic compensator based
feedback designs, the technical difficulties brought by nonlinearities,
uncertainties, and optimal requirements are successfully overcame.

Remark 7: Compared with [12], the multiagent system (2) is further
subject to dynamic uncertainties. Moreover, the considered agents are
nonlinearly parameterized with respect to uncertainties in contrast to
the linear parameterized fashion in [12]. As the pure adaptive rules fail
to solve this problem, a novel robust distributed controller has been
developed to deal with the complicated uncertainties.

Fig. 1. Communication digraph G in our examples.

Fig. 2. Profiles of agent outputs in Example 1.

V. SIMULATION

In this section, we present two examples to illustrate the effectiveness
of our designs.

Example 1: Consider a rendezvous problem [32] for four single-link
manipulators with flexible joints as follows:

Ji1q̈i1 +MigLi sin qi1 + ki(qi1 − qi2) = 0

Ji2q̈i2 − ki(qi1 − qi2) = ui (24)

where qi1, qi2 are the angular positions, Ji1, Ji2 ar the moments of
inertia, Mi is the total mass, Li is a distance, ki is a spring constant,
and ui is the torque input. The communication digraph among these
agents is depicted as Fig. 1 with unity edge weights with λ2 = 2 and
λ4 = 3.

To steer these manipulators to rendezvous at a common position that
minimizes the aggregate distance from their starting position to this final
position, we letyi = qi1 and take the cost functions asfi(yi) = 1

2
||yi −

qi1(0)||2 and f(y) = 1
2

∑4
i=1 ||y − qi1(0)||2 (i = 1, . . . , 4). One can

check that the optimal solution of the global cost function is y� =
1
4

∑4
i=1 qi1(0). To make this problem more interesting, we assume

that Mi = (1 + wi1)Mi0 and Li = (1 + wi2)Li0 with nominal mass
Mi0, nominal length Li0, and uncertain parameters wi1, wi2.

Letting xi = col(qi1, q̇i1, q
(2)
i1 , q

(3)
i1 ), we rewrite system (24)

into the form (2) with w = col(w11, w12, . . . , w41, w42), ni =
4, bi(w) =

ki
Ji1Ji2

and gi(xi, w) = −xi3[MigLi
Ji1

cos(xi1) +
ki
Ji1

+
ki
Ji2

] + MigLi
Ji1

(x2i2 − ki
Ji2

) sin(xi1). We can verify all assumptions in
this article and solve this problem according to Theorem 1.

For simulations, we set Ji1 = 1, Ji2 = 1, Li0 = 1,Mi = 1, ki = 1
for simplicity and the uncertain parameters are randomly chosen such
thatwi1, wi2 ≥ 0. Following the procedures in Lemma 2 and Theorem
1, we select α = 1, β = 15 for the generator (7) and ki1 = 1, ki2 =
3, ki3 = 3, κi(ri) = 1, ρi(ζi, ri) = ζ4i + 1, τi(ζi, ri) = ρi(ζi, ri)ζ

2
i

for the controller (18) with 1 ≤ i ≤ 4. All initial conditions are ran-
domly chosen and the simulation result is shown in Fig. 2, where the
optimal rendezvous can be observed on y�.

Example 2: Consider another multiagent system including two con-
trolled FitzHugh–Nagumo dynamics [33]

żi = − (1 + wi3)czi + (1− wi4)bxi

ẋi = (1 + wi6)xi(a− xi)(xi − 1)− zi + (1 + wi5)ui

yi = xi, i = 1, 2
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Fig. 3. Profiles of agent outputs in Example 2.

and two controlled Van der Pol oscillators [13]

ẋi1 = xi2

ẋi2 = − (1 + wi3)xi1 + (1 + wi4)(1− x2i1)xi2 + (1 + wi5)ui

yi = xi1, i = 3, 4

with input ui, output yi, constants a, b, c > 0, and unknown parameter
wij . Let w = col(w13, w14, . . . , w44, w45). Clearly, all these agents
are of the form (2).

We consider the optimal output consensus problem for this hetero-
geneous multiagent system with more complicated cost functions as
f1(y)=(y − 8)2, f2(y)=

y2

80 ln (y2+2)
+(y − 5)2, f3(y)=

y2

20
√
y2+1

+ y2, f4(y) = ln(e−0.05y + e0.05y) + y2. Using the inequalities 0 ≤
1

ln(y2+2)
≤ 1.5, 0 ≤ 1√

y2+1
≤ 1, −1 ≤ e0.05y−e−0.05y

e0.05y+e−0.05y ≤ 1, we can

verify Assumption 2 with li = 1 and li = 3 for i = 1, . . . , 4. Further-
more, the global optimal point is y� = 3.24 by numerically minimizing∑4
i=1 fi(y).
Let a = 0.2, b = 0.8, c = 0.8. The uncertain parameters are ran-

domly chosen such that wi3, wi5 ≥ 0 for i = 1, . . . , 4. Without
knowing the boundary of the compact set W containing these uncer-
tainties, the controllers in [19] fail to solve the associated optimal
output consensus problem. However, we can verify Assumptions 3
and 4 for i = 1, 2 with z�i (s, w) =

(1−wi2)b
(1+wi1)c

s,Wiz(s) = αi(s) = s2,
γie(s) = γiμ(s) = 1. Note that these two assumptions trivially hold
for i = 3, 4. According to Theorem 1, the associated optimal output
consensus problem can be solved by a distributed controller of the form
(18). For simulations, we still use α = 1, β = 15, and then choose
ρi(ζi, ri) = ζ4i + r4i + 1, κi(ri) = r4i + 1, τi(ζi, ri) = ρi(ζi, ri)ζ

2
i

with ζi = xi − ri for i = 1, 2 and ρi(ζi, ri) = ζ4i + r4i + 1,κi(ri) =
r4i + 1, τi(ζi, ri) = ρi(ζi, ri)ζ

2
i with ζi = xi1 − ri + xi2 for i =

3, 4. All initial conditions are randomly chosen and the simulation
result is shown in Fig. 3, where a satisfactory performance can be
observed and the optimal output consensus is achieved on the optimal
point y� = 3.24.

VI. CONCLUSION

We have studied an optimal output consensus problem for a class
of heterogeneous high-order nonlinear systems with both static and
dynamic uncertainties. We proposed a two-step design scheme to con-
vert it into two subproblems: optimal consensus for single-integrator
multiagent system and distributed partial stabilization of some aug-
mented nonlinear systems. By adding a dynamic compensator to deal
with the uncertainties, we constructed two distributed controls for

this problem under standing conditions. Our future works include the
MIMO extension with time-varying digraphs.

APPENDIX

PROOF OF LEMMA 4

The proof is completed by successively using the changing supply
functions technique [31].

We first consider the case when ni ≥ 2. Under Assumption 4, we
apply the changing supply functions technique to the zi-subsystem and
conclude that, for any given Δiz(zi) > 0, there exists a continuously
differentiable function W 1

iz(zi) satisfying αiz(||zi||) ≤W 1
iz(zi) ≤

αiz(||zi||) and

Ẇ 1
iz ≤ −Δiz(zi)||zi||2 + σiξγ

1
iξ(ξi)||ξi||2 + σiμγ

1
iμ(μi, ri)μ

2
i

for some known smooth functions αiz , αiz ∈ K∞, γ1
iζ , γ1

iμ > 1 and
unknown constants σiξ, σiμ > 1.

From the choice of kij , matrix Ao
i is Hurwitz. Then, there exists

a unique positive definite matrix P i satisfying Ao
i
ᵀP i + P iA

o
i =

−3Im−1. LetW 0
iξ(ξi) = ξᵀi P iξi. Its time derivative along the trajectory

of (9) satisfies

Ẇ 0
iξ = 2ξᵀi P i[A

o
i ξi +Bo

i ζi −Eo
i μi]

≤ − ||ξi||2 + ||P iBo
i ||2||ζi||2 + ||P iEo

i ||2μ2
i .

By changing supply functions of ξi-subsystem, for any givenΔiξ(ξi) >
0, there exists a continuously differentiable functionW 1

iξ(ξi) satisfying
αiξ(||ξi||) ≤W 1

iξ(ξi) ≤ αiξ(||ξi||) and

Ẇ 1
iξ ≤ −Δiξ(ξi)||ξi||2 + γiζ(ζi)||ζi||2 + γiμ(μi)μ

2
i

for some known smooth functions αiξ, αiξ ∈ K∞, γiζ , γiμ > 1.
Let Wiz̃(z̃i) =W 1

iz(zi) + σiξW
1
iξ(ξi). Clearly, there exist func-

tions α̃i, α̃i ∈ K∞ satisfying α̃i(||z̃i||) ≤Wiz̃(z̃i) ≤ α̃i(||z̃i||). Its
time derivative along the trajectory of (12) satisfies

Ẇiz̃ ≤ −Δiz(zi)||zi||2 − σiξ(Δiξ(ξi)− γ1
iξ(ξi))||ξi||2

+ σiξγiζ(ζi)||ζi||2 + σiξγiμ(μi)μ
2
i + σiμγ

1
iμ(μi, ri)μ

2
i .

Letting Δiz(zi) > 1, Δiξ(ξi) > γ1
iξ(ξi) + 1, γ̃iμ(μi, ri) >

γiμ(μi) + γ1
iμ(μi, ri), and σ̃iμ > max{σiξ, σiμ} gives

Ẇiz̃ ≤ −||z̃i||2 + σiζγiζ(ζi)||ζi||2 + σ̃iμγ̃iμ(μi, ri)μ
2
i .

When ni = 1, the above property trivially holds for z̃i = zi.
Next, we apply the changing supply functions technique to z̃i-

subsystem and conclude that, for any given smooth function Δ̃i(z̃i) >
0, there exists a continuously differentiable functionW 1

iz̃(z̃i) satisfying

α̃1
i (||z̃i||) ≤W 1

iz̃(z̃i) ≤ α̃
1

i (||z̃i||) and

Ẇ 1
iz̃ ≤ −Δ̃i(z̃i)||z̃i||2 + σ̃iζ γ̃

1
iζ(ζi)||ζi||2 + σ̃iμγ̃

1
iμ(μi, ri)μ

2
i

for some known smooth functions α̃1
i , α̃

1

i ∈ K∞, γ̃1
iζ , γ̃1

iμ > 1, and
unknown constants σ̃iζ , σ̃iμ > 1.

Let Wi(ẑi) = �̃iW
1
iz̃(z̃i) + η̄2i with �̃i > 0 to be specified later.

Clearly, the first inequality in Lemma 4 holds. We take time derivative
of Wi along the trajectory of (19) and have

Ẇi ≤ − �̃i[Δ̃i(z̃i)||z̃i||2 − σ̃iζ γ̃
1
iζ(ζi)||ζi||2 − σ̃iμγ̃

1
iμ(μi, ri)μ

2
i ]

+ [−κi(ri)ηi + g̃i(zi, ξi, ζi, ri, w) + ψi(ri, w)μi].
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Jointly with the inequalities (13) and (14), we can bound the cross
terms by completing the square and have

Ẇi ≤ −
[
�̃iΔ̃i(z̃i)− 2ĉigφ̂i2(z̃i)

b20

]
||z̃i||2

−
[
κi(ri)− φ̂i1(ri)

2
− 1

2

]
η̄2i

+

[
�̃iσ̃iζ γ̂

1
iζ(ζi) +

κi(ri)

b20
+

2ĉigφ̂i3(ζi)

b20

]
||ζi||2

+
[
2�̂iψφ̂i4(ri) + �̃iσ̃iμγ̂

1
iμ(μi, ri)

]
μ2
i .

Note that κi(ri) ≥ φ̂i1(ri) + 1. Letting �̃i >
2ĉig
b2
0

+ 1, Δ̃i(z̃i) >

φ̂i2(z̃i) + 1, σ̂iζ > �̃iσ̃iζ +
2ĉig
b2
0

, σ̂iμ > �̃iσ̃iμ + 2�̂iψ , γ̂iζ(ζi, ri) >

γ̂1
iζ(ζi) + κi(ri) + φ̂i3(ζi), and γ̂ir(μi, ri) > φ̂i4(ri) + γ̂1

iμ(μi, ri)
implies the second inequality and thus completes the proof.
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