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Abstract

This paper studies an optimal output consensus problem for discrete-time linear multi-
agent systems subject to external disturbances. Each agent is assigned with a local cost
function which is known only to itself. Distributed protocols are to be designed to guaran-
tee an output consensus for these high-order agents and meanwhile minimize the aggregate
cost as the sum of these local costs. To overcome the difficulties brought by high-order
dynamics and external disturbances, an embedded design is developed and a distributed
rule to solve this problem is constructively present. The proposed control includes three
terms: an optimal signal generator under a directed information graph, an observer-based
compensator to reject these disturbances, and a reference tracking controller for these
linear agents. It is shown to solve the formulated problem with some mild assumptions.
A numerical example is also provided to illustrate the effectiveness of our proposed dis-
tributed control laws.

1 INTRODUCTION

In recent years, a lot of efforts have been made to study the
distributed coordination of multi-agent systems. As one of the
most important problems, distributed optimisation has drawn
growing attention due to its wide applications in machine learn-
ing, power systems and sensor networks [1–3]. In a typical set-
ting of this problem, a network of interconnected nodes are
associated with a group of convex functions, while each node
only knows one component of these functions. The design goal
is to drive all nodes to reach some steady-states specified by
minimising the sum of these functions through information
exchanges with each other.

Among plenty of publications on this topic, optimal con-
sensus, where the agents are required to reach a consensus on
the minimizer of the sum of the local cost functions, has been
intensively investigated along with many significant results. For
instance, the authors in [4] investigated the distributed consen-
sus optimisation problem through a novel combination of aver-
age consensus algorithms with sub-gradient methods. Exten-
sions with global or local constraints on the decision variables
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were further studied in [5, 6]. Efforts have also been made
to derive distributed algorithms with fast convergence rate in
[7–9]. Paralleled with these discrete-time results, continuous-
time solvers to reach an optimal consensus were also developed
under various conditions in [10–12].

At the same time, it is observed that most of the above
results are derived only for single-integrator agents from the
viewpoint of mathematical programming. In practical applica-
tions, the decision variables might be determined by or depend
upon physical plants, which cannot be described well by sin-
gle integrators, for example, a group of mobile robots to
achieve a rendezvous [13]. In [14], a numerical example was
provided to show that direct use of distributed rules for sin-
gle integrators might fail to achieve the optimisation goal for
agents with unity relative degree. Therefore, we should take
the high-order dynamics into account when seeking an opti-
mal consensus in a distributed manner. As the gradient-based
rules are basically non-linear, achieving optimal (output) con-
sensus might be challenging due to the coupling between the
high-order dynamics of agents and the distributed optimisation
requirement.
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Some interesting attempts have been made along this techni-
cal line for several kinds of continuous-time high-order dynam-
ics. For example, the authors in [15, 16] extended existing dis-
tributed optimisation rules to continuous-time second-order
agents by adding some integral terms. Similar ideas have been
used in [17] to achieve optimal consensus for high-order inte-
grators by bounded controls. For a multi-agent system with gen-
eral linear dynamics, the authors in [18] proposed an embedded
control scheme to solve this kind of optimal coordination prob-
lems in a modular way. Some special classes of non-linear multi-
agent systems were also investigated in literature to achieve such
an optimal consensus goal in [19, 20]. However, in contrast
with these papers for continuous-time high-order agents, there
is still no general result to our best knowledge on achieving opti-
mal consensus for discrete-time multi-agent systems with non-
integrator dynamics.

The objective of this paper is to develop distributed rules
for discrete-time high-order agents to achieve an optimal out-
put consensus. To be specific, we assume that the agents are of
general linear time-invariant dynamics and can exchange infor-
mation through a communication topology represented by a
directed graph. All agents are to be designed to reach an out-
put consensus and meanwhile minimize the aggregate cost as
the sum of local ones. Moreover, we further consider the cases
when agents are subject to external disturbances, which are
inevitably encountered in practical circumstances.

The contribution of this work is at least two-fold. On the one
hand, an optimal consensus problem for a group of discrete-
time linear multi-agent systems is formulated and solved as a
high-order extension of existing discrete-time distributed opti-
misation results for single integrators [6, 21]. On the other hand,
novel distributed controllers are developed to achieve the opti-
mal (output) consensus goal for these agents under weight-
balanced directed graphs with disturbance rejection, which can
be taken a discrete-time counterpart of the embedding designs
in [18, 22] to solve such optimal consensus problem. Moreover,
the proposed algorithm is free of initialisation in contrast with
some similar works requiring a non-trivial initialisation under
both undirected and directed graphs [11, 17, 19], which might
be more favorable in large scale multi-agent systems.

The rest of this paper is organised as follows: We first give
some preliminaries about graph notations and convex analysis
in Section 2 and then formulate the problem in Section 3. The
main design with proofs is presented in Section 4 with a numer-
ical example in Section 5. Finally, some concluding remarks are
given in Section 6.

2 PRELIMINARIES

In this section, we first provide some preliminaries about graph
theory [23] and convex analysis [24].

2.1 Graph theory

We will use standard notations. Let ℝN be the N -dimensional
Euclidean space. col(a1, … , aN ) = [a⊺1 , … , a

⊺
N

]⊺ for column
vectors ai (i = 1, … , N ). For a vector a (or a matrix A), |a|

(or |A|) denotes its Euclidean (or spectral) norm. 1N (or 0N )
denotes an N -dimensional all-one (or all-zero) column vector,
and IN denotes the N -dimensional identity matrix.

A weighted directed graph (digraph) is described by a triplet
 = ( , ,) with the node set  = {1,… , N } and the
edge set  . (i, j ) ∈  denotes an edge from nodes i to j . The
weighted adjacency matrix  = [ai j ] ∈ ℝN×N is defined by
aii = 0 and ai j ≥ 0. Here, ai j > 0 means there is an edge ( j, i )
in this graph with edge weight ai j . The neighbor set of node i

is defined as i = { j ∣ ( j, i ) ∈ } for i = 1,… , N . A directed
path is an alternating sequence i1e1i2e2…ek−1ik of nodes il
and edges em = (im, im+1) ∈  for l = 1, 2,… , k. If there is a
directed path between any two vertices, then the digraph is
said to be strongly connected. The in-degree and out-degree

of node i is defined by d in
i =

∑N

j=1 ai j and d out
i =

∑N

j=1 a ji .

The Laplacian of digraph  is defined as L ≜ Din − with
Din = diag(d in

1 ,… , d in
N

). A digraph is weight-balanced if

d in
i = d out

i holds for any i = 1,… , N .
Note that L1N = 0N for any digraph. If this digraph is

weight-balanced, it also holds that 1
⊺
N

L = 0
⊺
N

and the matrix

Sym(L) ≜
L+L⊺

2
is positive semidefinite. If this weight-balanced

digraph is strongly connected, 0 is a simple eigenvalue of
Sym(L) and all other eigenvalues are positive real numbers. In
this case, we order these eigenvalues as 𝜆1 = 0 < 𝜆2 ≤ ⋯ ≤
𝜆N .

2.2 Convex analysis

A function f : ℝm → ℝ is said to be convex if for 0 ≤ a ≤ 1,

f (a𝜁1 + (1 − a)𝜁2) ≤ a f (𝜁1) + (1 − a) f (𝜁2), ∀𝜁1, 𝜁2 ∈ ℝm.

When the function f is differentiable, it is verified that f is con-
vex if the following inequality holds,

f (𝜁1) − f (𝜁2) ≥ ∇ f (𝜁2)⊺(𝜁1 − 𝜁2), ∀𝜁1, 𝜁2 ∈ ℝm.

and is strictly convex if this inequality is strict whenever 𝜁1 ≠ 𝜁2.
A function f is 𝜔-strongly convex (𝜔 > 0) over ℝm if we have

(∇ f (𝜁1) − ∇ f (𝜁2))⊺(𝜁1 − 𝜁2) ≥ 𝜔|𝜁1 − 𝜁2|2, ∀𝜁1, 𝜁2 ∈ ℝm.

A vector-valued function f : ℝm → ℝm is Lipschitz with
constant 𝜗 > 0 (or simply 𝜗-Lipschitz) if we have

| f (𝜁1) − f (𝜁2)| ≤ 𝜗|𝜁1 − 𝜁2|, ∀𝜁1, 𝜁2 ∈ ℝm.

3 PROBLEM FORMULATION

Consider a multi-agent system consisting of N discrete-time lin-
ear agents of the following form:

xi (t + 1) = Axi (t ) + Bui (t ) + di (t ), i = 1, 2,… , N

yi (t ) = Cxi (t ), t = 0, 1, 2,…
(1)
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where xi (t ) ∈ ℝnx is the state, ui (t ) ∈ ℝnu is the input, and
yi (t ) ∈ ℝ is the output of agent i. The system matrices (C, A, B)
are assumed to be minimal with compatible dimensions.
Here, di (t ) ∈ ℝnx represents external disturbances modelled
by

di (t ) = Ewi (t ), wi (t + 1) = Swi (t ), t = 0, 1, 2,… (2)

where wi ∈ ℝnw is the full internal state of external disturbances.
As usual, we assume that S has no eigenvalue inside the unit
circle on the complex plane [25]. In fact, the components of
wi corresponding to the eigenvalues inside the unit circle will
exponentially converge to zero and thus in no way affect the
designed goal.

Each agent is assigned with a local objective function fi :
ℝ → ℝ. We define an aggregate objective function for this
multi-agent system as the sum of these local functions, that is,

f (s) =
∑N

i=1 fi (s). This aggregate objective function f is called
the global cost function of this multi-agent system.

Here is an assumption to ensure the existence and uniqueness
of minimal solutions to function f .

Assumption 1. For any 1 ≤ i ≤ N , the cost function fi is l -
strongly convex and ∇ fi is l̄ -Lipschitz.

Similar assumptions have been widely used in literature, for
example, [7, 11, 15, 26]. As usual, we assume this unique optimal
solution is finite and denote it as y∗, that is,

y∗ = arg min
s∈ℝ

f (s) ≜
N∑

i=1

fi (s). (3)

We aim to develop distributed algorithms to drive the outputs
of all agents to achieve a consensus on the minimizer y∗ of f

without setting up a centralised working station, which might
be expensive and inhibitive in some circumstances.

For this purpose, a weighted digraph  = ( ,  , ) is used
to describe the information sharing relationships among these
agents with a node set  = {1,… , N } and a weight matrix  ∈
ℝN×N . If agent i can get the information of agent j , then there
is an edge ( j, i ) in the graph, that is, ai j > 0.

The optimal output consensus problem for discrete-time
multi-agent system (1) can be formulated as follows. Given agent

(1), cost function fi (⋅), graph  and disturbance (2), the optimal output

consensus problem is to find a feedback control ui for agent i by using its

own and neighboring information such that all trajectories of agents are

bounded and the resultant outputs satisfy limt→+∞ |yi (t ) − y∗| = 0 for

any i = 1,… , N .

Remark 1. In this formulation, these agents are required to
achieve an output consensus minimising the aggregate global
cost function. When agents are all single integrators with-
out disturbances, our formulated problem is coincided with
the well-studied distributed optimisation or optimal consensus
results [4, 21]. Here, we further consider multi-agent systems
having discrete-time high-order dynamics subject to external
disturbances.

To guarantee that any agent’s information can reach any
other agents through a directed information flow, we suppose
the following assumption is fulfilled as in many publications
[11, 15, 27].

Assumption 2.  is strongly connected and weight-balanced.

Note that when this optimal output consensus problem is
solved, we have limt→∞ yi (t ) = y∗. It is natural for agent i to
reach some steady state. Thus, we make another assumption to
ensure this point.

Assumption 3. There are constant matrices X1, X2 and U1, U2
with compatible dimensions satisfying that:

X1 = AX1 + BU1, 1 = CX1

X2S = AX2 + BU2 + E, 0⊺ = CX2

. (4)

Assumption 3 is known as the solvability of regulator equa-
tions to achieve set-point regulation and disturbance rejection
for discrete-time linear systems [25], which plays a crucial role
in resolving our optimal consensus problem. Some well-known
verifiable conditions can be found in [25]. Under this assump-
tion, we can directly solve the linear matrix equations to obtain
their solutions. In this way, one can further obtain the steady-
state state and input for each agent as X1y∗ + X1w(t ) and
U1y∗ +U2w(t ) when the optimal output consensus is achieved
at y∗ with disturbance rejection.

To reject the external disturbances, we suppose the following
condition holds without loss of generality.

Assumption 4. The pair

([
C 0

]
,

[
A E

0 S

])
is observable.

This assumption implies that the external disturbances can
indeed affect our regulated output yi . A sufficient condition to
ensure this assumption is the observability of (E, S ), which can
be trivially verified by PBH-test.

4 MAIN RESULTS

To avoid the difficulties brought by the high-order linear dynam-
ics, we develop an embedded design in two steps as that in [18,
20] to achieve the expected optimal output consensus for these
agents over directed graphs.

4.1 Optimal signal generation

To begin with, we consider an optimal consensus problem for a
group of virtual agents

zi (t + 1) = zi (t ) + 𝜇i (t ) (5)

with the same cost function fi and information sharing graph
.
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Under Assumption 1, the optimisation problem (3) can be
reformulated to the following equivalent form:

min f̃ (y) ≜
N∑

i=1

fi (yi ), subject to Ly = 0,

with y ≜ col(y1,… , yN ) and L is the Laplacian of this digraph.
Moreover, the associated Lagrangian of this auxiliary optimisa-
tion problem is then (y, Λ̃) = f̃ (y) + Λ̃⊺Ly with Λ̃ ∈ ℝN .

There have been some distributed rules to achieve optimal
consensus goal or compute the global optimal solution y∗ under
directed graphs for agent (5), for example, [11, 28]. However,
most of these algorithms require some initialisation process.
Since there might be disturbances or round-off errors, such an
initialisation could fail to be fulfilled during the implementation
of these rules. Thus, we are more interested to construct optimal
signal generators free of such initialisations.

Note that when the digraph is undirected and connected, the
Laplacian L is symmetric and the optimal point can be readily
derived by a primal-dual dynamics (e.g. [21]). As for digraphs,
we lose such a symmetry and the original primal-dual method
fails to generate the optimal point. Here, we extend the primal-
dual dynamic to weight-balanced graphs by adding a propor-
tional terms as follows.

zi (t + 1) = zi (t ) − 𝛾(𝛼∇ fi (zi (t )) + 𝛽Lzi (t ) + L𝜆i (t ))

𝜆i (t + 1) = 𝜆i (t ) + 𝛾𝛼𝛽Lzi (t ), (6)

where 𝛼, 𝛽 and 𝛾 are positive constants to be specified later.
This algorithm has been partially investigated in [21] when 𝛼 =
𝛽 = 1. Here, we add these two tunable parameters to ensure its
efficiency with directed graphs.

Putting system (6) into a compact form gives that

Z (t + 1) = Z (t ) − 𝛾[𝛼∇ f̃ (Z (t )) + 𝛽LZ (t ) + LΛ(t )]

Λ(t + 1) = Λ(t ) + 𝛾𝛼𝛽LZ (t ), (7)

where Z (t ) = col(z1(t ),… , zN (t )),Λ(t ) = col(𝜆1(t ),… , 𝜆N (t )),
and ∇ f̃ (Z (t )) ≜ col(∇ f1(z1(t ),… ,∇ fN (zN (t ))). Under
Assumption 1, the function ∇ f̃ is l̄ -Lipschitz in Z .

Let (Z∗, Λ∗ ) be an equilibrium point of system (7). The fol-
lowing lemma shows that these agents can achieve the expected
optimal consensus at the equilibrium (Z∗, Λ∗ ).

Lemma 1. Under Assumptions 1–2, we have Z∗ = y∗1N .

Proof. At the equilibrium point of system (7), we have

𝛼∇ f̃ (Z∗ ) + 𝛽LZ∗ + LΛ∗ = 0, LZ∗ = 0.

By Assumption 2, LZ∗ = 0 implies that there exists a con-
stant z∗0 such that Z∗ = z∗0 1N . Multiplying both sides by 1

⊺
N

, we
have 1

⊺
N

[𝛼∇ f̃ (Z∗ ) + 𝛽LZ∗ + LΛ∗] = 1
⊺
N
∇ f̃ (Z∗ ) = 0. That

is, ∇ f (z∗0 ) = 0. From the strong convexity of cost functions,

the optimal solution to problem (3) is unique. This means that
z∗0 = y∗ and thus Z∗ = y∗1N . The proof is complete. □

To develop effective optimal signal generators, we have to
choose appropriate parameters 𝛼, 𝛽, 𝛾 such that the equilib-
rium of (7) is attractive. Here is a key lemma to ensure this point.
Its proof can be found in Appendix.

Lemma 2. Under Assumptions 1–2, the trajectory of zi (t ) along system

(6) exponentially converges to the optimal solution y∗ of problem (3) from

any initial value if the chosen parameters satisfy

𝛼 ≥ max

{
1,

1
l

,
2l̄ 2

l 𝜆2

}

𝛽 ≥ max

{
1,

4𝛼2𝜆2
N

𝜆2
2

}

0 < 𝛾 <
1

𝛽4(𝜆2
N
+ l̄ 2)

. (8)

Remark 2. Condition (8) is only sufficient to guarantee the effi-
ciency of generator (6) to reproduce y∗, which can be con-
servative. One may prefer to select these parameters from
repeated simulations by first increasing 𝛼, 𝛽 and then decreasing
𝛾 sequentially.

Remark 3. Compared with existing optimal consensus design,
the designed generator actually solve a distributed optimisation
problem under weight-balanced directed graphs. Unlike similar
rules in [11, 15, 17], the developed algorithm is initialisation-
free and more favorable in large scale networks with varying
numbers of agents.

4.2 Solvability of optimal consensus
problem

With the above optimal signal generator, we are going to
solve the associated reference tracking and disturbance rejection
problem for agent i with reference zi (t ) and disturbance di (t ).

Recalling some classical output regulation results [25], a full-
information control for each agent to achieve optimal output
consensus is written as follows:

u0
i (t ) = Kxi (t ) + K1y∗ + K2wi (t ), t = 0, 1,… ,

where K is chosen such that A + BK is Schur stable and K1 =
U1 − KX1, K2 = U2 − KX2. In fact, under this full-information
control, we can obtain an error system by letting x̄i (t ) = xi (t ) −
X1y∗ − X2wi (t ) of the following form:

x̄i (t + 1) = (A + BK )x̄i (t ), t = 0, 1,…

along which the regulated output ei (t ) ≜ yi (t ) − y∗ = C x̄i (t )
converges to zero as t goes to infinity.
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However, the disturbance wi (t ) is not available to us and
the global optimal solution y∗ is also unknown due to the dis-
tributedness of the global cost function. Thus, the above full-
information control is not applicable to our problem.

In Lemma 2, we have shown that the optimal solution y∗

can be generated by (6) exponentially fast. This motivates us
to replace y∗ by the reference signal zi (t ). As for the unknown
external disturbances, we can estimate them by observer based
methods to complete the whole design.

To this end, a full-state Luenberger observer is constructed
to estimate these disturbances as follows.

x̃i (t + 1) = (A + L1C )x̃i (t ) + Bui (t ) + Ew̃i (t ) − L1yi

w̃i (t + 1) = S w̃i (t ) + L2(C x̃i (t ) − yi ),
(9)

where L1 and L2 are chosen gain matrices with compatible
dimensions such that the following matrix is Schur stable.

Ãc ≜

[
A + L1C E

L2C S

]
.

Note that such L1 and L2 indeed exist under Assumption 4.
Here is a lemma to show the estimation capacity of

observer (9).

Lemma 3. Under Assumption 4, for any 1 ≤ i ≤ N , the signals x̃i (t )
and w̃i (t ) along the trajectory of system (9) exponentially converge to xi (t )
and wi (t ) as t goes to infinity.

Proof. To prove this lemma, we denote ̄̃xi = xi (t ) − x̃i (t ) and
̄̃wi = wi (t ) − w̃i (t ). Jointly using equations (1), (2), and (9), we
have the following estimation error system for agent i:

̄̃xi (t + 1) = (A + L1C ) ̄̃xi (t ) + E ̄̃wi (t )

̄̃wi (t + 1) = L2C ̄̃xi (t ) + S ̄̃wi (t )

or in a compact form:[
̄̃xi (t + 1)
̄̃wi (t + 1)

]
=

[
A + L1C E

L2C S

] [
̄̃xi (t )
̄̃wi (t )

]
.

The above block matrix is exactly Ãc , which is Schur stable
from the selection of L1 and L2. Hence, both ̄̃xi = xi (t ) − x̃i (t )
and ̄̃wi = wi (t ) − w̃i (t ) will converge to 0 exponentially fast as t

goes to infinity. The proof is thus complete. □

Based on the optimal signal generator (6) and observer (9),
we propose a dynamic controller for agent i as follows.

ui (t ) = K x̃i (t ) + K1zi (t ) + K2w̃i (t )

x̃i (t + 1) = (A + L1C )x̃i (t ) + Bui (t ) + Ew̃i (t ) − L1yi

w̃i (t + 1) = S w̃i (t ) + L2(C x̃i (t ) − yi )

zi (t + 1) = zi (t ) − 𝛾(𝛼∇ fi (zi (t )) + 𝛽Lzi (t ) + L𝜆i (t ))

𝜆i (t + 1) = 𝜆i (t ) + 𝛾𝛼𝛽Lzi (t ), t = 0, 1,… (10)

where matrices L1, L2 and parameters 𝛼, 𝛽, 𝛾 are chosen as
above. This control law is distributed in sense of using only its
own and neighboring information of each agent.

To show its effectiveness, we derive the new error system
under control (10) by some mathematical manipulations as fol-
lows:

xi (t + 1) = (A + BK )xi (t ) + BΞi (t )

ei (t ) = C xi (t ), t = 0, 1, …
(11)

where Ξi (t ) ≜ K (x̃i (t ) − xi (t )) + K1(zi (t ) − y∗ ) + K2(w̃i (t ) −
wi (t )). It is verified that Ξi (t ) represents the discrepancy
between our actual control effort ui (t ) and its corresponding
full-information version u0

i (t ).
It is ready to give our main theorem of this paper.

Theorem 1. Suppose Assumptions 1–4 hold. Then the optimal output

consensus problem for discrete-time linear multi-agent system (1), (2), and

(3) is solved by a distributed controller (10).

Proof. To prove this theorem, we first claim that there
exists a constant c > 0 such that lim sup

t→∞
|ei (t )| ≤

c lim sup
t→∞

|Ξi (t )|. Moreover, if limt→∞ |Ξi (t )| = 0, we have
limt→∞ ei (t ) = 0. This property is a variant of input-to-output
stability of system (11) with input Ξi (t ) and output ei (t ).

To prove it, we denote G = A + BK for short. By the itera-
tion (11), one can obtain that

xi (t ) = Gt xi (0) +
t−1∑
j=0

Gt−1− j BΞi ( j ), i = 1,… , N

Under Assumption 3, the regulated output ei is derived as
follows.

ei (t ) = CGt xi (0) +C

t−1∑
j=0

Gt−1− j BΞi ( j ). (12)

Since G is Schur stable, limt→∞CGt xi (0) = 0. To estimate
the limit superior of {|ei (t )|}, we can neglect this term without
affecting the conclusion. Without loss of generality, we assume
bi ≜ lim sup

t→∞
|Ξi (t )| is finite.

By its definition, for any 𝜀 > 0, there exists a large enough
integer M > 0 such that ||Ξi (t )| − bi | ≤ 𝜀 holds for any t > M .
Splitting the last term of (12) into two parts gives that

||||||C
M∑
j=0

Gt−1− j BΞi ( j ) +C

t−1∑
j=M+1

Gt−1− j BΞi ( j )
||||||

≤ |C ||B| [ M∑
j=0

|G |t−1− j |Ξi ( j )| + t−1∑
j=M+1

|G |t−1− j |Ξi ( j )|]

≤ |C ||B||Gt−1−M | M∑
j=0

|G |M− j |Ξi ( j )|
+ (bi + 𝜀)

t−1∑
j=M+1

|G |t−1− j
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1 2 3 4

FIGURE 1 Communication graph  in our example

Note that

t−1∑
j=M+1

|G |t−1− j =
1 − |G |t−M

1 − |G | <
1

1 − |G |
and |G |t−1−M → 0 as t →∞ by its Schurness. We have that

lim sup
t→∞

|ei | ≤ 1
1 − |G | (bi + 𝜀).

Since the constant 𝜀 can be chosen arbitrarily, this further
implies that limpsupt→∞|ei (t )| ≤ climpsupt→∞|Ξi (t )| for c =

1

1−|G | . That is, our initial claim is correct.

With the above claim, we only have to showΞi (t ) → 0 as t →
∞ under the control (10), which trivially holds by Lemmas 2 and
3. Thus, one can conclude that ei (t ) = yi (t ) − y∗ converges to 0
as t goes to infinity. The proof is thus complete. □

Remark 4. This theorem can be regarded as a discrete-time
companion of existing optimal output consensus results for
continuous-time agents derived in [17, 18]. Compared with the
well-studied optimal consensus problem for discrete-time sin-
gle integrators [4, 8, 9 21], we extend them to a more general
case with high-order linear multi-agent systems subject to non-
trivial disturbances. Particularly, we achieve an output average
consensus for these linear agents by letting fi (s) = (s − yi (0))2

with disturbance rejection.

5 SIMULATIONS

In this section, we provide a numerical example to illustrate the
effectiveness of our previous designs.

Consider a multi-agent system including four agents as fol-
lows.

xi (t + 1) =

[
1 1
0 1

]
xi (t ) +

[
0.5
1

]
ui (t ) + di (t )

yi (t ) =
[
1 0

]
xi (t ), t = 0, 1, 2,… .

where the external disturbance di (t ) is generated by an exosys-
tem of the form (2) with

E =

[
0.5 0.5

sin(1) − cos(1) − cos(1) − sin(1)

]
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FIGURE 2 Profiles of zi under the generator (6)
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FIGURE 3 Profiles of 𝜆i under the generator (6)

and

S =

[
cos(1) sin(1)
− sin(1) cos(1)

]
.

The observability of (E, S ) can be verified, which implies
Assumption 4. Assumption 3 is also confirmed with

X1 =

[
1
0

]
, U1 = 0, X2 =

[
0 0
−1 −1

]
, U2 =

[
2 2

]
.

The communication topology among these agents is repre-
sented by a directed ring graph depicted as Figure 1 with unity
edge weights, which satisfies Assumption 2 with 𝜆2 = 1 and|L| = 2. The local cost functions are chosen as below.

f1(y) = (y − 8)2
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FIGURE 4 Output trajectories of agents under the controller (10)

f2(y) =
y2

20
√

y2 + 1
+ y2

f3(y) =
y2

80 ln(y2 + 2)
+ (y − 5)2

f4(y) = ln (e−0.005y + e0.005y ) + y2.

All these functions are strongly convex with Lipschitz gradients.
In fact, Assumption 1 is verified with l = 1 and l̄ = 3. By min-

imising f (y) =
∑4

i=1 fi (y), the global optimal point is y∗ = 3.24.
According to Theorem 1, the associated optimal output con-

sensus problem can be solved by a control (10). For simulations,
we choose 𝛼 = 1, 𝛽 = 15, 𝛾 = 0.004. The state profiles of the
developed optimal signal generator are shown in Figures 2 and
3, where the optimal point y∗ can be reproduced quickly while all
trajectories of this optimal signal generator keep to be bounded.

Next, we choose the gain matrices in control (10) as follows.

K =

[
−0.4345
−1.0285

]⊺
, L1 =

[
−1.8184
−0.3543

]
, L2 =

[
−0.1527
−0.3141

]
.

As shown in Figure 4, the optimal output consensus for all
agents is achieved on the global optimal solution y∗. To make it
more interesting, we shut down the disturbance rejection part in
the controller (i.e. set K2 = 0) between t = 2000 and t = 2250
and find that these agents fail to achieve a consensus. After we
restart this part, the optimal output consensus is quickly recov-
ered, which verifies the efficiency of our control to reject these
periodic disturbances.

6 CONCLUSIONS

The paper has studied an optimal output consensus for discrete-
time linear multi-agent systems subject to external disturbances.
Following an embedded control design, we have employed a
primal-dual rule with fixed step sizes to generate the opti-
mal point and developed effective observer based tracking
controllers for these agents to achieve the expected opti-
mal output consensus goal. Future works will consider time-
varying digraphs.
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APPENDIX A

A.1 Proof of Lemma 2

First, we denote rN =
1√
N

1N ,ΠN = IN − rN r
⊺
N

and let RN ∈

ℝN×(N−1) be the matrix satisfying R
⊺
N

rN = 0N−1, R
⊺
N

RN =

IN−1 and RN R
⊺
N
= ΠN . Note that the matrix R

⊺
N

Sym(L)RN

is positive definite with eigenvalues 𝜆2,… , 𝜆N .
We perform the coordinate transformations: Z̄1(t ) =

r
⊺
N

(Z (t ) − Z∗ ), Z̄2(t ) = R
⊺
N

(Z (t ) − Z∗ ), Λ̄1(t ) = r
⊺
N
Λ(t ), and

Λ̄2(t ) = R
⊺
N
Λ(t ). The translated system is given as

Z̄1(t + 1) = Z̄1(t ) − 𝛾𝛼r
⊺
N
Δ1

Z̄2(t + 1) = Z̄2(t ) − 𝛾R
⊺
N

[𝛼Δ1 + 𝛽LZ̄ (t ) + LRN Λ̄2(t )]

Λ̄2(t + 1) = Λ̄2(t ) + 𝛾𝛼𝛽R
⊺
N

LZ̄ (t )

where Z̄ (t ) = col(Z̄1(t ), Z̄2(t )) and Δ1 ≜ ∇ f̃ (Z (t )) − ∇ f̃ (Z∗ ).
It can be verified that Δ1 is l̄ -Lipschitz with respect to Z̄ (t )
under Assumption 1.

By further letting 𝜉(t ) = Λ̄2(t ) + 𝛼R
⊺
N

Z̄2(t ), we have

Z̄1(t + 1) = Z̄1(t ) − 𝛾𝛼r
⊺
N
Δ1

Z̄2(t + 1) = Z̄2(t ) − 𝛾𝛼R
⊺
N
Δ1 − 𝛾Δ2

𝜉(t + 1) = 𝜉(t ) − 𝛾Δ3 (13)

where RL = R
⊺
N

LRN , Δ2 ≜ 𝛽RLZ̄2(t ) + RL𝜉(t ) − 𝛼RLZ̄2(t ),
and Δ3 ≜ 𝛼RL𝜉(t ) + 𝛼2R

⊺
N
Δ1 − 𝛼2RLZ̄2(t ).

Next, we present a Lyapunov analysis to prove the exponen-
tial stability of system (13). Take a quadratic Lyapunov function

V (Z̄ (t ), 𝜉(t )) = |Z̄ (t )|2 + 1

𝛼3
|𝜉(t )|2 with 𝛼 > 0 to be specified

later and denote it as V (t ) for short. Apparently, it is positive
definite and radially unbounded. The time difference of V (t )
along the trajectory of system (13) satisfies:

Δ(t ) ≜ V (t + 1) −V (t )

= |Z̄1(t ) − 𝛾𝛼r
⊺
N
Δ1|2 + |Z̄2(t ) − 𝛾𝛼R

⊺
N
Δ1 − 𝛾Δ2|2

− |Z̄ (t )|2 + |𝜉(t ) − 𝛾Δ3|2 − |𝜉(t )|2
≤ −2𝛾𝛼l |Z̄ (t )|2 + 𝛾2𝛼2|Δ1|2 + 𝛾2|Δ2|2 − 2𝛾Z̄

⊺
2 (t )Δ2

− 2𝛾2𝛼Δ
⊺
1RNΔ2 −

2𝛾
𝛼3
𝜉(t )⊺Δ3 +

𝛾2

𝛼3
|Δ3|2

To handle the above cross terms, we jointly use Young’s inequal-

ity and the fact R
⊺
N

Sym(L)RN =
RL+R

⊺
L

2
. It follows that

− 2𝛾Z̄
⊺
2 (t )Δ2

= −2𝛾Z̄
⊺
2 [𝛽RLZ̄2(t ) + RL𝜉(t ) − 𝛼RLZ̄2(t )]

≤ −2𝛾𝛽𝜆2|Z̄2(t )|2 + 2𝛾𝛼𝜆N |Z̄2(t )|2 − 2𝛾Z̄
⊺
2 RL𝜉(t )

≤ −𝛾(2𝛽𝜆2 − 2𝛼𝜆N −
3𝛼2𝜆2

N

𝜆2
)|Z̄2(t )|2 + 𝛾𝜆2

3𝛼2
|𝜉(t )|2
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and

− 2𝛾𝜉(t )⊺Δ3

≤ −2𝛾𝜉(t )⊺[𝛼RL𝜉(t ) + 𝛼2R⊺Δ1 − 𝛼2RLZ̄2(t )]

≤ −2𝛾𝛼𝜆2|𝜉(t )|2 − 2𝛾𝛼2𝜉(t )⊺R⊺Δ1 + 2𝛾𝛼2𝜉(t )⊺RLZ̄2(t )

≤ −
4
3
𝛾𝛼𝜆2|𝜉(t )|2 + 3𝛾𝛼3 l̄ 2

𝜆2
|Z̄ (t )|2 + 3𝛾𝛼3𝜆2

N

𝜆2
|Z̄2(t )|2.

Using the above two inequalities, one can derive that

Δ(t ) ≤ −2𝛾𝛼l |Z̄ (t )|2 + 𝛾2𝛼2|Δ1|2 + 𝛾2|Δ2|2 − 2𝛾2𝛼Δ
⊺
1RΔ2

− 𝛾(2𝛽𝜆2 − 2𝛼𝜆N −
3𝛼2𝜆2

N

𝜆2
)|Z̄2(t )|2 + 𝛾𝜆2

3𝛼2
|𝜉(t )|2

−
4𝛾𝜆2

3𝛼2
|𝜉(t )|2 + 3𝛾l̄ 2

𝜆2
|Z̄ (t )|2 + 3𝛾𝜆2

N

𝜆2
|Z̄2(t )|2 + 𝛾2

𝛼3
|Δ3|2

≤ −𝛾(2𝛼l −
3l̄ 2

𝜆2
)|Z̄ (t )|2 − 𝛾𝜆2

𝛼2
|𝜉(t )|2

− 𝛾(2𝛽𝜆2 − 2𝛼𝜆N −
3𝛼2𝜆2

N

𝜆2
−

3𝜆2
N

𝜆2
)|Z̄2(t )|2

+ 2𝛾2𝛼2|Δ1|2 + 2𝛾2|Δ2|2 + 𝛾2

𝛼3
|Δ3|2

.

Letting 𝛼 ≥ max{1,
1

l
,

2l̄ 2

l 𝜆2
} and 𝛽 ≥ max{1,

4𝛼2𝜆2
N

𝜆2
2

}

gives

Δ(t ) ≤ −
𝛾

2
V (t ) + 2𝛾2𝛼2|Δ1|2 + 2𝛾2|Δ2|2 + 𝛾2

𝛼3
|Δ3|2.

We use Young’s inequality again to dominate the last three
terms and obtain the following relationships:

|Δ1|2 ≤ l̄ 2|Z̄ (t )|2
|Δ2|2 ≤ 2 max{(𝛽 − 𝛼)2, 1}𝜆2

N
(|Z̄2(t )|2 + |𝜉(t )|2)

≤ 2𝛽2𝜆2
N

(|Z̄2(t )|2 + |𝜉(t )|2)

|Δ3|2
𝛼3

≤
1
𝛼
|RL𝜉(t ) + 𝛼R⊺Δ1 − 𝛼RLZ̄2(t )|2

≤
3𝜆2

N

𝛼
|𝜉(t )|2 + 3𝛼l̄ 2|Z̄ (t )|2 + 3𝛼𝜆2

N
|Z̄2(t )|2.

Combining these inequalities gives

Δ(t ) ≤ −
𝛾

2
V (t ) + 2𝛾2𝛼2 l̄ 2|Z̄ (t )|2 + 4𝛾2𝛽2𝜆2

N
|Z̄2(t )|2

+ 4𝛾2𝛽2𝜆2
N
|𝜉(t )|2 + 3𝛾2𝜆2

N

𝛼
|𝜉(t )|2 + 3𝛾2𝛼l̄ 2|Z̄ (t )|2

+ 3𝛾2𝛼𝜆2
N
|Z̄2(t )|2

≤ −
𝛾

2
V (t ) + 5𝛾2𝛽2(𝜆2

N
+ l̄ 2)(|Z̄ (t )|2 + |𝜉(t )|2)

≤ −
𝛾

2
V (t ) + 5𝛾2𝛽2(𝜆2

N
+ l̄ 2)𝛼3V (t )

≤ −
𝛾

2
V (t ) +

5
16
𝛾2𝛽4(𝜆2

N
+ l̄ 2)V (t ).

By setting 0 < 𝛾 <
1

𝛽4(𝜆2
N
+l̄ 2 )

, it follows that

Δ(t ) ≤ −
3𝛾
16

V (t ).

According to Theorem 2 in [29], we obtain the exponential con-
vergence of V (t ) and thus Z̄ (t ) to the origin as t →∞. By
Lemma 1, the proof is complete.
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