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Optimal Output Consensus of High-Order
Multiagent Systems With Embedded Technique

Yutao Tang , Zhenhua Deng , and Yiguang Hong, Fellow, IEEE

Abstract—In this paper, we study an optimal output consen-
sus problem for a multiagent network with agents in the form
of multi-input multioutput minimum-phase dynamics. Optimal
output consensus can be taken as an extended version of the exist-
ing output consensus problem for higher-order agents with an
optimization requirement, where the output variables of agents
are driven to achieve a consensus on the optimal solution of a
global cost function. To solve this problem, we first construct an
optimal signal generator, and then propose an embedded control
scheme by embedding the generator in the feedback loop. We give
two kinds of algorithms based on different available information
along with both state feedback and output feedback, and prove
that these algorithms with the embedded technique can guar-
antee the solvability of the problem for high-order multiagent
systems under standard assumptions.

Index Terms—Embedded control, high-order system, optimal
output consensus, optimal signal generator.

I. INTRODUCTION

COORDINATION problems of multiagent systems have
drawn much research interests due to the fast develop-

ment of large-scale systems/networks, and multiple high-order
agents have been widely discussed to deal with some practi-
cal coordination problems, including consensus and formation
in recent years [1]–[4]. Particularly, because of the cost or
difficulty in the measurement of all the agent states, output
consensus for high-order (minimum-phase) agents has been
widely studied [5]–[9].

In some practical applications, it might not be enough to
achieve only a consensus in multiagent systems and optimality
issues of the consensus point have to be taken into consid-
eration. Recently, distributed optimization has attracted more
and more attention with their broad potential applications in
multiagent systems, smart grid, and sensor networks [10]–[13].
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Among them, the case with a sum of convex objective func-
tions has been intensively studied these years. In the problem
setup, each agent is assigned with a local cost function and
the control objective is to propose distributed control that
guarantees a consensus on the optimal solution of the sum
of all local cost functions. Many results were obtained based
on gradients or subgradients of the local cost functions com-
bined with consensus rules. In addition to many discrete-time
algorithms [10], [14]–[16], continuous-time gradient-based
optimal consensus algorithms were proposed in different situ-
ations, considering that there are many powerful continuous-
time methods. For example, Shi et al. [17] reduced the
distributed optimization problem as an intersection computing
problem of convex sets, where each convex set is determined
by the local cost function. An alternative continuous-time
algorithm was provided with discrete-time communication
in [18] to solve this problem, and moreover, a distributed
optimization algorithm with disturbance rejection was stud-
ied by virtue of internal model principle in [19]. In addition,
various gradient-based algorithms have also be proposed to
handle the constrained distributed optimization problem (refer
to [20]–[24]). Note that most of the literature only consider
single-integrator agents.

Furthermore, many optimal consensus or distributed
optimization tasks may be implemented or depend on physical
dynamics in practice, thus the distributed design involved with
continuous-time agents dynamics has to be taken into account.
In fact, continuous-time physical systems or hybrid cyber-
physical systems are employed in practical coordination tasks,
for example, in cooperative search of radio sources [25] and in
the distributed optimal power flow problem [12], [26]. Since
practical systems are hardly described by single integrators,
we may have to take high-order dynamics into consideration.
For example, for double integrators, Zhang and Hong [27]
proposed a distributed optimization algorithm with an integral
control idea and a similar design was employed for Lagrangian
agents [28]. It was later extended to high-order integrators [29]
assumed the existence of a kind of Lyapunov functions for
high-order agents. Generally, this problem is still far from
being solved.

The objective of this paper is to study the optimal output
consensus problem for high-order minimum-phase multiagent
systems. To be specific, we give a framework for the optimal
output consensus design over a group of multi-input mul-
tioutput (MIMO) minimum-phase agents. In light of the
optimization requirement for output consensus, the gradient-
based closed-loop systems are basically nonlinear since we
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consider general convex objective functions, although the
agents are in the form of linear dynamics. The high-order
features of these agents bring many new problems in its
analysis and design, which make this problem much more
challenging.

To overcome the difficulties brought by both high-order
dynamics and nonlinearities from gradients, we propose an
embedded control scheme, consisting of an optimal signal
generator and a reference-tracking controller. This embedded
technique makes the control design carried out in a “sepa-
rative” way, so as to simplify the whole design by almost
independently tackling the optimal consensus problem for
single integrators and tracking control of high-order agents.
In fact, the main contributions of this paper include the
following.

1) A general framework of optimal output consensus
was formulated and solved for a group of MIMO
minimum-phase agents with vector relative degrees. This
problem can be taken as an extension by combining
the two hot topics: a) output consensus of high-order
agents [6]–[9] and b) distributed optimization for single
integrators [10], [15]–[18]. Since output consensus must
be achieved as the solution of a convex optimization
problem of the whole multiagent system, it is certainly
more challenging than the existing output consensus
problem for high-order agents. Our optimal output
consensus results, in either asymptotic or exponential
stability, are consistent with the existing results.

2) A novel embedded control method is proposed for this
optimal output consensus problem to handle the high-
order dynamics in multiagent systems. By constructing
an optimal signal generator and embedding it in the
feedback loop, we can solve this problem by almost
independently achieving an optimal consensus over these
generators and reference-tracking control of high-order
agents. Compared with existing optimization results for
high-order integrators with some Lyapunov function
assumptions in [29], this embedded technique provides a
quite general and constructive way to solve this problem
via separating the optimization and control design.

3) Two distributed gradient-based algorithms are provided
by the given embedded approach in two different gra-
dient information cases. In addition to state feedback
algorithms for this problem, output feedback exten-
sions with local observer design in each case are also
proposed since the state variable of high-order agents
may not be available by measurements. Under some
standard assumptions, the optimal output consensus
can be achieved asymptotically and even exponentially,
while many existing continuous-time publications are on
asymptotic stability [17], [23], [29].

The organization of this paper is as follows. Preliminaries
about convex analysis and graph theory are introduced and
the optimal output consensus problem is formulated in
Section II. Then an embedded optimization control framework
is proposed for high-order minimum-phase agents with vec-
tor relative degrees in Section III. Main results are presented
and proved in Section IV along with the given gradient-based

control in both state feedback and output feedback cases.
Following that, two examples are given to illustrate the effec-
tiveness of the proposed algorithm in Section V. Finally,
concluding remarks are given in Section VI.

Notations: Let R
n be the n-dimensional Euclidean space.

For a vector x, ‖x‖ denotes its Euclidian norm. 1N (and 0N)
denotes an N-dimensional all-one (and all-zero) column vector.
col(a1, . . . , an) = [a�

1 , . . . , a�
n ]� for column vectors ai (i =

1, . . . , n). rN = (1/
√

N)1N , and RN ∈ R
N×(N−1) satisfying

R�
N rN = 0N , R�

N RN = IN−1 and RNR�
N = IN − rNr�

N .

II. PRELIMINARIES

In this section, some basic concepts are introduced for con-
vex analysis [30], [31] and graph theory [32], and then the
optimal output consensus problem is formulated.

A. Convex Analysis

A function f (·) : R
m → R is said to be convex if, for any

0 ≤ a ≤ 1

f (aζ1 + (1 − a)ζ2) ≤ af (ζ1)+ (1 − a)f (ζ2), ∀ ζ1, ζ2 ∈ R
m.

A differentiable function f is convex over R
m if

f (ζ1)− f (ζ2) ≥ ∇f (ζ2)
T(ζ1 − ζ2), ∀ ζ1, ζ2 ∈ R

m (1)

and f is strictly convex over R
m if the above inequality is strict

whenever ζ1 �= ζ2, and f is ω-strongly convex (ω > 0) over
R

m if ∀ ζ1, ζ2 ∈ R
m

(∇f (ζ1)− ∇f (ζ2))
T(ζ1 − ζ2) ≥ ω‖ζ1 − ζ2‖2. (2)

A vector-valued function f : R
m → R

m is Lipschitz with
constant ϑ > 0, or simply ϑ-Lipschitz, if

‖f(ζ1)− f(ζ2)‖ ≤ ϑ‖ζ1 − ζ2‖, ∀ ζ1, ζ2 ∈ R
m.

B. Graph Theory

A weighted undirected graph is described by
G = (N ,E ,A ) with the node set N = {1, . . . ,N}
and the edge set E (without self-loops). (i, j) ∈ E denotes an
edge between nodes i and j. The weighted adjacency matrix
A = [aij] ∈ R

N×N is defined by aii = 0 and aij = aji > 0
(aij > 0 if and only if there is an edge between node
i and node j). The neighbor set of node i is defined as
Ni = { j : ( j, i) ∈ E} for i = 1, . . . , n. A path in graph G
is an alternating sequence i1e1i2e2. . . ek−1ik of nodes il and
edges em = (im, im+1) ∈ E for l = 1, 2, . . . , k. If there is
a path between any two vertices, then the graph is said to
be connected. The Laplacian L = [lij] ∈ R

N×N of graph G
is defined as lii = ∑

j �=i aij and lij = −aij( j �= i), which is
thus symmetric. Denote the eigenvalues of Laplacian matrix
L associated with a undirected graph G as λ1 ≤ . . . ≤ λN .
The following lemma is well-known [32].

Lemma 1: λ1 = 0 is an eigenvalue of L with 1N as its
corresponding eigenvector, and λ2 > 0 if and only if the graph
G is connected.
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C. Problem Formulation

In this paper, we consider a group of N continuous-time
linear agents as follows:

{ ˙̃xi = Ãx̃i + B̃ũi

yi = C̃x̃i, i = 1, 2, . . . , N
(3)

where x̃i ∈ R
κ , yi ∈ R

m, and ũi ∈ R
m are the state variable,

the output variable and the control input, respectively.
Vector relative degree is a well-known concept and widely

used in the study of MIMO systems, which is introduced as
follows.

Definition 1: System (3) is said to have a vector relative
degree (r1, . . . , rm) if:

1) C̃iÃkB̃j = 0 for all 1 ≤ i, j ≤ m and 0 ≤ k < ri − 1;
2) the m × m matrix R̃ � [ιij] is nonsingular with ιij =

C̃iÃri−1B̃j, where C̃i is the ith row of matrix C̃ and B̃j

is the jth column of B̃.
To clarify our optimal output consensus problem, we focus

on a class of systems as follows.
Assumption 1: System (3) is minimum-phase and has a

vector relative degree (r1, . . . , rm).
Remark 1: In fact, this assumption has been frequently used

in the study of linear or nonlinear MIMO systems [33], [34]
including integrators as special cases. Clearly, a single-input
single-output linear system certainly has a relative degree.

Associated with these agents, the communication topol-
ogy can be described by a weighted undirected graph G =
(V, E, A), where an edge (i, j) ∈ E means that agent i and
j can exchange information each other. Furthermore, each
agent is endowed with a differentiable local cost function
fi : R

m → R. The global cost function is defined as the sum of
local costs, i.e., f ( y) =∑N

i=1 fi( y). In distributed design, agent
i has its own local cost function fi(·), which is only known to
itself and cannot be shared globally in the multiagent network.

The optimal output consensus problem associated with those
agents (3) is then formulated as follows. Given a multiagent
system (3), the communication graph G and local cost function
fi(·), find a distributed control ũi for agent i by only its own
local data and exchanged information with its neighbors such
that all the trajectories of agents are bounded and their outputs
satisfy

lim
t→+∞

∥
∥yi(t)− y∗∥∥ = 0 (4)

where y∗ is the optimal solution of

min
y∈Rm

f ( y). (5)

Remark 2: Different from the widely studied output con-
sensus problem, optimal output consensus we formulated
for high-order agents can be regarded as its extension by
requiring further the consensus point as the optimal solution
of a convex cost function. In fact, as the requirement (4)
coincides distributed optimization problem when agents are
single integrators, it apparently implies an output consensus
of the multiagent systems [7], [9]. Many practical problems
can be written in this form, including motion planing and
formation control in robotics [35], [36]. As optimal output
consensus focuses on static optimization and the steady-state

performance of high-order dynamic agents, we do not give
any limitations or concerns about the energy or input when
we achieve the output consensus. In other words, energy/input
optimization is usually involved with optimal control, but here
our optimal output consensus cares about the output consensus
point as the solution of a convex optimization.

The following assumptions are often made to solve
output consensus and/or distributed optimization prob-
lems [7], [18], [19], [37].

Assumption 2: The graph G is undirected and connected.
Assumption 3: For i = 1, . . . ,N, the function fi(·) is strictly

convex.
Assumption 2 is about the connectivity of graph G, which

guarantees that any agent’s information can reach any other
agents. Assumption 3 implies the uniqueness of the optimal
solution to (5) [30]. As usual, we assume there exists a finite
optimal solution to (5) (refer to [18] and [27]). To get better
convergence performances, we make another assumption as
follows.

Assumption 4: For i = 1, . . . ,N, the function fi(·) is
ω-strongly convex and its gradient is ϑ-Lipschitz for some
positive constants ω and ϑ .

Assumption 4 is stronger than Assumption 3. In fact, strong
convexity implies the strict convexity and the Lipschitz condi-
tion here facilitates the study of exponential convergence. Both
the two assumptions have been widely used in (distributed)
optimization problem [18], [19], [23], [37].

Note that the gradient-based optimization control is basi-
cally nonlinear and the general high-order system structure
needs an effective design policy to optimize the output vari-
ables, which make the optimal output consensus problem
much more challenging than most existing optimal consensus
designs for the single-integrator and double-integrator agents.
To tackle these problems, we propose an embedded control
framework in the next section.

III. EMBEDDED CONTROL SCHEME

In this section, we introduce an embedded control frame-
work to solve the optimal output consensus problem of
high-order MIMO agents in a quite unified way.

Embedded ideas or techniques are becoming ubiquitous in
control applications [38]. They provide flexible and reconfig-
urable structures to design controllers for complicated systems
by integration and implementation of some standard but sim-
ple control designs. In the following, we first brief the whole
idea of our embedded control scheme depicted in Fig. 1 and
then present the first two steps of this approach.

This scheme consists of three components: 1) precompen-
sator to deal with vector relative degree for (3); 2) optimal
signal generator to solve (5); and 3) reference-tracking con-
troller to force the agent to track the generator. With a
precompensator, the original system is transformed to a normal
form (10a) with homogeneous relative degrees. This simplifies
the design and makes us only focus on high-order integrators.
To avoid the difficulties resulting from the high-order struc-
ture, we introduce an optimal signal generator by considering
the same optimization problem for “virtual” single integrators,
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Fig. 1. Schematic of the embedded control framework in optimal output
consensus.

in order to asymptotically reproduce the optimal solution y∗
by a signal zi. Then by taking zi as an output reference signal
for the high-order agents and embedding this generator in the
feedback loop via a tracking controller to be designed in the
next section, we solve the optimal output consensus problem
of system (3).

Note that the key part for the optimization is the optimal
signal generator, embedded in the feedback loop so that the
physical system can achieve the optimization after its output
follows the optimal signal given by this generator. In this way,
we first solve the optimal (output) consensus problem for sim-
ple integrators, and then seek to synthesize the controllers
for physical complex agents by embedding the optimal sig-
nal generator in a well-designed reference-tracking controller
for the system (10a) to follow (16). Detailed designs of the
precompensator and optimal signal generator are given in the
following two sections.

A. Precompensator

Many high-order agents have vector relative degrees with
ri �= rj when i �= j. To make the design simpler, we make
a precondition on agents’ dynamics to achieve input–output
decoupling with the same relative degree in each channel.
To be specific, we transform (3) by precompensation tech-
niques [33] to a normal form through decoupling the MIMO
agent dynamics and homogenizing the relative degrees.

According to [34] and [39], we can determine a group
of basis under Assumption 1 and the associated coordinate
transformation as follows:
{
ξ ib
ιj = C̃ιÃj−1x̃i with j = 1, . . . , rι and ι = 1, . . . ,m
ξ ia
ι = ψιx̃ with ψιB̃ = 0, ι = 1, . . . , κ − (r1 + . . .+ rm).

Denote χb
i = col(ξ ib

11, . . . , ξ
ib
1r1
, . . . , ξ ib

m1, . . . , ξ
ib
mrm
) and χa

i =
col(ξ ia

1 , . . . , ξ
ia
κ−∑m

j=1 rj
). Then the system (3) can be written in

the following form:
⎧
⎪⎪⎨

⎪⎪⎩

χ̇a
i = �χa

i +�χb
i

ξ̇ ib
ιj = ξ ib

ι( j+1), j = 1, . . . , rι − 1

ξ̇ ib
ιrι = ϒιχ

a
i + Sιχb

i + C̃ιÃrι−1B̃ũi

yi = col
(
ξ ib

11, . . . , ξ
ib
m1

)
, ι = 1, . . . ,m, i = 1, . . . ,N

(6)

where ϒι ∈ R
κ−∑m

j=1 rj , Sι ∈ R

∑m
j=1 rj , � ∈

R
(κ−∑m

j=1 rj)×∑m
j=1 rj , and � ∈ R

(κ−∑m
j=1 rj)×(κ−∑m

j=1 rj). Note

that � is Hurwitz (that is, the real parts of its eigenvalues
are negative) due to the minimum-phase of system (3).

Take ui = col(ui1, . . . , uim), ϒ = col(ϒ1, . . . , ϒm), S =
col(S1, . . . , Sm), and

ũi = R̃−1
(
−ϒχa

i − Sχb
i + ui

)
. (7)

Therefore,
⎧
⎪⎪⎨

⎪⎪⎩

χ̇a
i = �χa

i +�χb
i

ξ̇ ib
ιj = ξ ib

ι( j+1), j = 1, . . . , rι − 1
ξ̇ ib
ιrι = uiι

yi = col
(
ξ ib

11, . . . , ξ
ib
m1

)
, ι = 1, . . . ,m, i = 1, . . . ,N.

(8)

Without loss of generality, we assume max{r1, . . . , rm} = n.
Then ui is taken as

{
u(n−rι)

iι = viι, when n > rι
uiι = viι, when n = rι, ι = 1, . . . , m

(9)

where u(n−rι)
iι is the (n − rι)th derivative of uiι. This implies

⎧
⎪⎨

⎪⎩

χ̇a
i = �χa

i +�χb
i (10a)

χ̇c
i = (A ⊗ Im)χ

c
i + (b ⊗ Im)vi (10b)

yi = (c ⊗ Im)χ
c
i , i = 1, . . . , N (10c)

where χc
i = col( yi, . . . , y(n−1)

i ), y( j)
i = col(y( j)

i1 , . . . , y( j)
im )

y( j)
iι =

⎧
⎨

⎩

ξ ib
ι( j+1), j ≤ rι − 1

uiι, j = rι
u( j−rι)

iι , j > rι

ι = 1, . . . ,m, j = 1, . . . , n − 1

and

A =
[

0n−1 In−1

0 0�
n−1

]

, b =
[
0�

n−1 1
]�
, c =

[
1 0�

n−1

]
.

Consequently, we can rewrite system (3) in a normal
form (10a), where the inputs and outputs are decoupled and
with homogeneous relative degrees (n, . . . , n). In this way, we
only have to consider agents in an integrator form composed
of (10b)–(10c) and get back to linear minimum-phase agents
of the form (3) by a combination of (7) and well-designed vi.

B. Optimal Signal Generator

Clearly, in the optimal output consensus problem, we have
two main tasks: 1) output variables of all the agents will go to
the common optimal solution and 2) all the state variables will
be bounded. Here, we give an embedded technique to “divide”
the problem in order to deal with the nontrivial difficulties in
the whole design. In other words, we first construct an optimal
signal generator to get the optimal consensus for virtual single
integrators by leveraging the existing distributed optimization
ideas and then use the leader-following ideas to achieve the
output consensus for high-order agents, where the design for
the virtual single integrators can be viewed as “embedded”
technique. Here, we define an optimal signal generator as
follows.

Definition 2: A system ξ̇ = g(ξ), z = h(ξ) is said to be
an optimal signal generator associated with ( fD, S, b) if its
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trajectory is well-defined and satisfies z → y∗ as t → +∞
where y∗ solves

min
y∈Rm

fD( y)

s.t. S�y = b (11)

where S ∈ R
m×n and b ∈ R

n.
Obviously, an optimal signal generator is a system that

can asymptotically reproduce the optimal solution of (11) (for
single integrators), and thus the design of optimal signal gen-
erator is independent of available information and high-order
plants. Although there may be various candidates, some of
them may not lead to an augmented system for which the
reference-tracking problem can be solved. Hence, consider-
ing system composition or embedded design, we also need to
concern the robustness of these generators.

Before constructing a suitable optimal signal generator
for (5), we present a useful lemma.

Lemma 2: Consider a system of the form

ẋ = −φ(x)− Sz, ż = S�x + Tz (12)

where x ∈ R
n, z ∈ R

l, φ : R
n → R

n is smooth and satis-
fies φ(0n) = 0n. Assume T + T� ≤ 0, (S,T) is observable,
and x�φ(x) > 0 if x �= 0n. Then the origin of the system is
asymptotically stable. Furthermore, if φ(·) is ϑ-Lipschitz and
satisfies x�φ(x) ≥ ωx�x for some positive constants ϑ and ω,
then the origin of the system is globally exponentially stable.

Proof: Take a Lyapunov function V = x�x+ z�z. It follows
that:

V̇ ≤ −2x�φ(x)+ z�(T + T�)z ≤ 0. (13)

According to the LaSalle’s invariance principle [40], every
trajectory of this system approaches the largest invariant set
contained in E = {(x, z) | x�φ(x) = 0}. Since no trajectory
can stay identically in E, other than the trivial solution (0n, 0l)

by the strict positiveness of φ(·) and observability of the pair
(S,T). Hence, the whole system is asymptotically stable at
(0n, 0l).

When φ(·) is ϑ-Lipschitz, from its smoothness, its
Jacobian [(∂φ)/(∂x)] is globally bounded. Obviously, φ(x) =
[
∫ 1

0 [(∂φ)/(∂x)](θx)dθ ] x is well-defined. Therefore, there
exists a time-dependent matrix D(t) = ∫ 1

0 [(∂φ)/(∂x)](θx)dθ
along the trajectory of system (12), which is clearly uniformly
bounded with respect to t. We then represent the system as
follows:

ẋ = −D(t)x − Sz, ż = S�x + Tz. (14)

Note that Āo(t) = Ao − C�D(t)C with

Āo(t) =
[−D(t) −S

S� T

]

, Ao =
[

0 −S
S� T

]

, C = [In 0].

Recalling the uniform boundedness of D(t) and
by [41, Lemma 4.8.1] or following its proofs, we
obtain that the pair (C, Āo(t)) is uniformly completely
observable from the observability of (C,Ao). Hence, there
exist positive constants δ and k such that

W(t, t + δ) =
∫ t+δ

t
��(τ, t)C�C�(τ, t)dτ ≥ kIn, ∀t ≥ 0

where �(·, ·) is the state transition matrix of (14).

The derivative of V then satisfies

V̇ ≤ −x�φ(x) ≤ −ωx�x. (15)

Integrating it from t to t + δ, we have that, for all t ≥ 0
∫ t+δ

t
V̇(τ )dτ ≤ −ωk

(
‖x(t)‖2 + ‖z(t)‖2

)
= −2ωkV(t).

Based on [40, Th. 8.5], one can conclude the global exponen-
tial stability of this system at the origin.

Remark 3: An interesting special case is when T = 0 and
S has a full-column rank. Apparently, (S, T) is observable.
If we further take φ(x) = ∇fD(x), this lemma provides the
stability of the primal-dual gradient dynamics associated with
the following optimization problem:

min
x∈Rn

fD(x)

s.t. S�x = 0.

We then give a lemma which provides us a distributed
optimal signal generator for (5).

Lemma 3: Suppose Assumptions 2 and 3 hold. Then the
optimal consensus problem of (5) with żi = vi, yi = zi is
solved by the following control:

{
vi = −∇fi(zi)−∑N

j=1 aij(λi − λj)

λ̇i =∑N
j=1 aij(zi − zj).

(16)

Furthermore, if Assumption 4 is satisfied, this control makes
yi(t) approach the optimal solution y∗ exponentially as t → ∞
for i = 1, . . . ,N.

Proof: The closed-loop system can be rewritten as follows:
{

ż = −∇f (z)− (L ⊗ Im)λ

λ̇ = (L ⊗ Im)z

where z = col(z1, . . . , zN), λ = col(λ1, . . . , λN) and f (z) is
determined by f1(z1), . . . , fN(zN).

Its equilibrium point satisfies −∇f (z∗) − (L ⊗ Im)λ
∗ = 0N

and (L ⊗ Im)z∗ = 0n×m. As a result, there exists a θ such that
z∗

1 = · · · = z∗
N = θ since the null space of L is spanned by 1N

under Assumption 2. Then one can obtain
∑N

i=1 ∇fi(θ) = 0,
which implies that θ is an optimal solution of (5). Thus, if
we can prove the asymptotic stability of (16) at its equilib-
rium point (z∗, λ∗), this algorithm indeed solves the distributed
optimization problem determined by (5).

For this purpose, we take z̄ = z − z∗, λ̄ = λ − λ∗, and
λ̂1 = (r� ⊗ Im)λ̄, λ̂2 = (R� ⊗ Im)λ̄. Since (r� ⊗ Im)λ̇ = 0m,
it follows that λ̂1 ≡ 0m and:

{ ˙̄z = −h − (LR ⊗ Im)λ̂2˙̂
λ2 = (R�L ⊗ Im

)
z̄

where h = ∇f (z) − ∇f (z∗). Denote S = LR ⊗ Im, which has
a full-column rank since R�L has a full-row rank. Hence, the
above error system is of the form (12). Note that the strict
convexity of fi(·) implies z̄�h > 0 when z̄ �= 0. By Lemma 2,
one can obtain the asymptotic stability of this error system
and hence the solvability of this optimal consensus problem
under (16).

When fi(·) satisfies Assumption 4, it follows that θ = y∗ and
h is ϑ-Lipschitz with z̄�h ≥ ωz̄�z̄. Then the origin of the error
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system is globally exponentially stable by Lemma 2, which
implies that the proposed algorithm makes yi(t) converge to θ
exponentially as t → ∞ for i = 1, . . . ,N.

Remark 4: As we mentioned, to design an optimal signal
generators is to propose a proper algorithm which can asymp-
totically reproduce the optimal solution of (11) (for the single
integrator). In other words, the practical dynamics of high-
order plants are not involved in its design. In the distributed
design, it means to find distributed algorithms to solve the
optimal consensus problem for a group of single integrators.
In fact, the generator (16) is inherently based on a primal-dual
method to achieve an optimal consensus for single integrators.

From Lemma 3, one can find system (16) is an optimal
signal generator for distributed optimization problem (5) if
fi(·) is strictly convex. Furthermore, under Assumption 4,
the proposed generator is of exponential stability. By
[40, Lemma 4.6], this optimal signal generator is robust to
additive perturbations on its righthand side in the sense of
input-to-state stability, which will play a role in our following
design.

With the designed precompensator and optimal signal gen-
erator, we will complete the control loop by proposing proper
reference-tracking controllers in the next section. In fact, this
controller bridges the gap between the system (10a) in a nor-
mal form and the optimal signal generator (16), and plays
an important role as an interface in the design of embed-
ded systems [42]. Since zi is time-varying, set-point regulators
might fail to achieve our goal. To handle this issue, we adopt
some system composition techniques and a high-gain strategy
in its design.

IV. OPTIMAL OUTPUT CONSENSUS

OF HIGH-ORDER AGENTS

In this section, we complete the embedded control design
and prove that the proposed control algorithms can solve the
optimal output consensus problem (5) for (3) in two gradient
cases.

We start with a simple case (i.e., case I) when the gradient
function ∇fi(·) is known to agent i, and then extend it to the
second case (i.e., case II) when only the real-time gradient
∇fi( yi) is available in the design. Both state and output feed-
back designs are proposed for two cases in the following two
respective sections.

Before the two sections, we give the following lemma for
convergence analysis in the study of the two cases.

Lemma 4: Consider a cascaded nonlinear system as fol-
lows:

ẋ1 = f1(x1)+ g(x1, x2), ẋ2 = f2(x2). (17)

Suppose for i = 1, 2:
1) ẋ1 = f1(x1) is globally exponentially stable at x1 = 0;
2) ẋ2 = f2(x2) is asymptotically (or globally exponentially)

stable at x2 = 0;
3) ‖g(x1, x2)‖ ≤ M‖x2‖ for all x1, x2 with a constant

M > 0.
Then the system (17) is also asymptotically (or globally
exponentially) stable at the origin.

Proof: The asymptotic stability is a direct consequence
of [40, Lemmas 4.6 and 4.7] and thus omitted here. We only
prove the global exponential stability part. From the first two
conditions and by [40, Th. 4.14], there exist a continuously
differentiable function Vi(x) and strictly positive constants
ci1, . . . , ci4 such that, for all xi

ci1‖xi‖2 ≤ Vi(xi) ≤ ci2‖xi‖2

V̇i ≤ −ci3‖xi‖2,

∥
∥
∥
∥
∂Vi

∂xi

∥
∥
∥
∥ ≤ ci4‖xi‖.

Denoting x � col(x1, x2) and taking a Lyapunov function
for the cascaded system (17) as V(x) = V1(x1)+ cV2(x2) with
c > 0 to be determined later. Its derivative along (17) satisfies

V̇ = ∂V1

∂x1
( f1(x1)+ g(x1, x2))+ c

∂V2

∂x2
f2(x2)

= −c13‖x1‖2 + Mc14‖x1‖|x2| − cc23‖x2‖2.

By Young’s inequality and letting c > [(Mc2
14 +

2c13)/(2c13c23)], we have

V̇ ≤ −c13

2
‖x1‖2 − ‖x2‖2.

Since min{c11, cc21}‖x‖2 ≤ V(x1, x2) ≤ max{c12, cc22}‖x‖2,
we invoke [40, Th. 4.10] and conclude the global exponential
stability of (17). Thus, the conclusion follows.

A. Case I

In this case, the optimal signal generator can be inde-
pendently implemented and asymptotically reproduce y∗ by
Lemma 3. Thus, we only need to propose tracking controllers
for agents.

We first show our result on the high-order integrators for
simplicity.

Theorem 1: Suppose Assumptions 2 and 3 hold. Then the
optimal consensus problem (5) with agents of the form x(n)i =
vi, yi = xi is solved by the following algorithm for any ε > 0:

⎧
⎪⎨

⎪⎩

vi = − 1
εn

[
c0(xi − zi)+∑n−1

k=1 ε
kckx(k)i

]

żi = −∇fi(zi)−∑N
j=1 aij

(
λi − λj

)

λ̇i =∑N
j=1 aij(zi − zj)

(18)

where c0, . . . , cn−1 are constants such that
∑n−1

k=0 cksk + sn is
Hurwitz. Furthermore, if Assumption 4 is satisfied, then yi(t)
converges to y∗ exponentially as t → ∞ for i = 1, . . . ,N.

Proof: Let x̂i = col(xi−zi, εx
(1)
i , . . . , εn−1x(n−1)

i ), it follows:

˙̂xi = 1

ε

(
Â ⊗ Im

)
x̂i + (b ⊗ Im)żi (19)

where Â =
[

0 In−1

−c0 [ − c1, . . . ,−cn−1 ]

]

and

b = col(−1, 0n−1).
Then the closed-loop system is
⎧
⎪⎨

⎪⎩

˙̂xi = 1
ε
Amx̂i + bm

[
−∇fi(zi)−∑N

j=1 aij(λi − λj)
]

żi = −∇fi(zi)−∑N
j=1 aij(λi − λj)

λ̇i =∑N
j=1 aij(zi − zj)

(20)

where Am = Â ⊗ Im and bm = b ⊗ Im.
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Due to the choice of c0, . . . , cn−1, the matrix Am is Hurwitz,
which implies ‖e(t−t0)(1/ε)Am‖ ≤ k1e−(k2/ε)(t−t0) for some pos-
itive constants k1 and k2. Solving (19) and using this bound,
we obtain
∥
∥x̂(t)

∥
∥ ≤ k1e− k2

ε (t−t0)
∥
∥x̂(t0)

∥
∥+ k1ε‖bm‖

k2
sup

t0≤τ≤t
‖ż(τ )‖.

By Lemma 3, zi converges to y∗ and żi converges to 0 when
t → ∞ for i = 1, . . . ,N. For any given δ > 0, there is a
time T1 > 0 such that ‖ż(t)‖ ≤ [(δk2)/(2k1ε‖bm‖)] for all
t > T1. Choose t0 > T1 and there exists a T2 > 0 such that
k1e−(k2/ε)(t−t0)‖x(t0)‖ ≤ (δ/2) for t > T2. Thus, ‖x̂(t)‖ ≤ δ

for all t > max{T1,T2}, which leads to the convergence of
xi − zi for i = 1, . . . ,N. Recalling limt→+∞ zi = y∗ gives the
convergence of xi with respect to y∗ for i = 1, . . . ,N.

To prove the exponential convergence, we rewrite the whole
closed-loop system as follows:

⎧
⎪⎨

⎪⎩

˙̂xi = 1
ε
Amx̂i + bm ˙̄zi

˙̄zi = −hi −∑N
j=1 aij

(
λ̄i − λ̄j

)

˙̄λi =∑N
j=1 aij

(
z̄i − z̄j

)
(21)

where x̂i = col(xi−zi, εx
(1)
i , . . . , εn−1x(n−1)

i ), z̄i = zi−y∗, λ̄i =
λi − λ∗

i , and hi = ∇fi(zi)− ∇fi( y∗) for i = 1, . . . ,N.
If Assumption 4 holds, (zi, λi) exponentially converges to

its equilibrium point ( y∗, λ∗
i ) as t → ∞ for i = 1, . . . ,N by

Lemma 3. From the Lipschitzness of ∇fi(·), the cross-term
˙̄zi is also Lipschitz with respect to (z̄i, λ̄i). By Lemma 4, the
exponential stability of (21) is achieved, which implies the
conclusion.

Remark 5: Clearly, as the gradients of local cost functions
are analytically known, the optimal signal generator can be
implemented independently. Then the whole system is in a cas-
cading form and the strict convexity will suffice the solvability
of this optimal output consensus problem. When Assumption 4
is satisfied, the convergence can be exponentially fast by
Lemma 4.

Based on Theorem 1 and the normal form (10a), we go back
to investigate linear minimum-phase agents of the form (3) and
get the following controller:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ũi = R̃−1
(−ϒχa

i − Sχb
i + ui

)

vi = − 1
εn

[
c0( yi − zi)+∑n−1

k=1 ε
kcky(k)i

]

żi = −∇fi(zi)−∑N
j=1 aij(λi − λj)

λ̇i =∑N
j=1 aij(zi − zj)

(22)

where c1, . . . , cn−1 are selected as given in Theorem 1, and
the relationship between ui and vi is described by (9).

Theorem 2: Suppose Assumptions 1–3 hold. Then the
optimal output consensus problem of system (3) is solved
by (22) for any ε > 0. Furthermore, if Assumption 4 is
satisfied, yi(t) converges to y∗ exponentially as t → ∞ for
i = 1, . . . ,N.

Proof: Based on the above analysis, the output variables
of system (10a) under control vi and system (3) under con-
trol (22) are the same. Thus, we only have to investigate the
convergence of (10a) under the above control. Clearly, the
subsystem (10b) and (10c) is equivalent to the nth-order inte-
grator. Let χ̃a

i = χa
i − χa

i
∗, χ̃b

i = χb
i − χb

i
∗

[where χa
i

∗, χb
i

∗

are the equilibrium point of (10a) and (10b) determined by
y∗] and define χ̂c

i as x̂i in Theorem 1. The whole systems is
rewritten as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̃χa
i = �χ̃a

i +�χ̃b
i˙̂χc

i = 1
ε
Amχ̂

c
i + bm ˙̄zi

˙̄zi = −hi −∑N
j=1 aij

(
λ̄i − λ̄j

)

˙̄λi =∑N
j=1 aij

(
z̄i − z̄j

)
.

Apparently, it is in a cascading form with the first subsystem
as a driven one. Recalling the minimum-phase property of (3),
the matrix � is Hurwitz. According to Theorem 1, the output
yi of the last three subsystems asymptotically converges to the
optimal solution y∗, then the asymptotic convergence of the
whole cascaded system can be obtained by Lemma 4. When
Assumption 4 holds, the global exponential stability can be
obtained in a similar way. The proof is thus complete.

Next, let us consider the case when only the output variables
of each agent can be obtained because it may be difficult to
get or measure all the state variables in some situations. Since
the optimal signal generator is independently implemented, we
only have to focus on the tracking part. To solve the problem,
we consider an output feedback version of the proposed high-
gain embedded control by proposing an observer-based output
feedback design.

Since system (3) is minimum phase and therefore detectable,
we can design the following local observer for agent i (i =
1, . . . ,N) of the form (3):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂yi = ŷ(1)i − l1(ŷi − yi)
˙̂y(1)i = ŷ(2)i − l2(ŷi − yi)

· · ·
˙̂y(n−1)

i = vi − ln(ŷi − yi)˙̂χa
i = �χ̂a

i +�χ̂b
i

(23)

where χ̂a
i , χ̂b

i , ŷi, and ŷ(ι)i are the estimations of χa
i , χb

i , yi, and
y(ι)i , respectively, with ι ∈ {1, . . . , n−1}, and l1, . . . , ln are con-
stants such that pl(s) = sn+l1sn−1+···+ln−1s+ln is Hurwitz.
Then we substitute these variables by their estimations and
propose the following distributed control for system (3):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ũi = R̃−1
(−ϒχ̂a

i − Sχ̂b
i + ui

)

vi = − 1
εn

[
c0( yi − zi)+∑n−1

k=1 ε
kckŷ(k)i

]

żi = −∇fi(zi)−∑N
j=1 aij

(
λi − λj

)

λ̇i =∑N
j=1 aij(zi − zj)

(24)

where c0, . . . , cn−1 and ε > 0 are defined as before, the
relationship between ui and vi is described by (9).

We then give the following results for the output feedback
design.

Theorem 3: Suppose Assumptions 1–3 hold. Then the
optimal output consensus problem for the agents of the
form (3) is solved by (24) for any ε > 0. Furthermore, if
Assumption 4 is satisfied, yi(t) converges to y∗ exponentially
as t → ∞ for i = 1, . . . ,N.

Proof: Taking ēi = col( yi − ŷi, . . . , y(n)i − ŷ(n)i ) and χ̄a
i =

χ̂a
i − χa

i , χ̄
b
i = χ̂b

i − χb
i gives

{ ˙̄ei = (Al ⊗ Im)ēi˙̄χa
i = �χ̄a

i +�χ̄b
i
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where

Al =
[−ln−1 In−1

−ln 0�
n−1

]

, ln−1 = col(l1, . . . , ln−1).

Recalling the Hurwitzness of �, we apply Lemma 4 and
obtain χ̂a

i , χ̂b
i , ŷi, ŷ(ι)i exponentially converge to χa

i , χb
i , yi, and

y(ι)i with ι ∈ {1, . . . , n − 1} for i ∈ {1, 2, . . . ,N}, respectively.
Since substituting χa

i , χb
i , yi and y(ι)i by their estimations

will not change the equilibrium point, we only have to prove
the stability of the new system with respect to its equilibrium
point under observer-based control laws. For this purpose, we
repeat the whole error systems as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

˙̃χa
i = �χ̃a

i +�χ̃b
i˙̂χc

i = 1
ε
Amχ̂

c
i + bm ˙̄zi + �i

˙̄zi = −hi −∑N
j=1 aij

(
λ̄i − λ̄j

)

˙̄λi =∑N
j=1 aij

(
z̄i − z̄j

)

˙̄χa
i = �χ̄a

i +�χ̄b
i˙̄ei = (Al ⊗ Im)ēi

where �i is Lipschitz in (χ̄a
i , ēi) determined by (7) and (24).

This whole system is again in a cascaded form with
the last two subsystems as the driving one. By Theorem 2
and Lemma 4, this implies the asymptotic stability when
fi(·) is strictly convex and global exponential stability under
Assumption 4. Hence, the proof is complete.

Remark 6: Based on the above analysis, it is worthwhile
to mention that we can solve the problem by making the
optimization design and tracking control design of high-order
dynamics almost independent, because the generator for the
optimization, independent of the high-order dynamics, is “sep-
arately” designed by each agent, and then embedded into the
designed reference-tracking control of the high-order dynam-
ics. As a result, the design complexities brought by high-order
dynamics are decoupled from those by the optimization task.
By solving the two simpler subproblems, the optimal output
consensus problem can be solved via constructive controllers.
Also, this embedded control framework enjoys a large flexi-
bility in choosing optimal signal generators and tracking con-
trollers, and therefore, may be useful in various optimization
algorithms.

B. Case II

In some cases, the function ∇fi(·) is hard to obtain and
only the real-time gradient ∇fi( yi) is available, and then
the optimal signal generator cannot be independently imple-
mented. Suppose we substitute ∇fi(zi) by ∇fi( yi) in (16), there
will be a mismatching error ∇fi(zi) − ∇fi( yi) in the control.
As stated in Lemma 3, the proposed optimal signal generator
under Assumption 4 is actually robust with respect to additive
perturbations. Thus, these mismatching errors can be han-
dled and compensated by its robustness along with small-gain
techniques and a high-gain design.

We first show the result on high-order integrators for
simplicity.

Theorem 4: Suppose Assumptions 1, 2, and 4 hold. Then
there exists a constant ε∗ > 0 such that the optimal output
consensus problem (5) with agents of the form x(n)i = vi, yi =

xi is solved by the following control algorithm for any ε ∈
(0, ε∗):

⎧
⎪⎨

⎪⎩

vi = − 1
εn

[
c0(xi − zi)+∑n−1

k=1 ε
kckx(k)i

]

żi = −∇fi( yi)−∑N
j=1 aij

(
λi − λj

)

λ̇i =∑N
j=1 aij

(
zi − zj

)
(25)

where c0, . . . , cn−1 are constants such that
∑n−1

k=0 cksk + sn is
Hurwitz. Moreover, yi(t) converges to the optimal solution y∗
exponentially as t → ∞ for i = 1, . . . ,N.

Proof: Letting z̄i = zi − y∗ and λ̄i = λi − λ∗
i gives

⎧
⎪⎪⎨

⎪⎪⎩

˙̂xi = 1
ε
Amx̂i + bm

[
−hi −�i −∑N

j=1 aij
(
λ̄i − λ̄j

)]

˙̄zi = −hi −�i −∑N
j=1 aij

(
λ̄i − λ̄j

)

˙̄λi =∑N
j=1 aij

(
z̄i − z̄j

)

where hi = ∇fi(zi) − ∇fi( y∗) and �i = ∇fi( yi) − ∇fi(zi), or
in a compact form
⎧
⎨

⎩

˙̂x = 1
ε
(IN ⊗ Am)x̂ + (IN × bm)

[−h −�− (L ⊗ Im)λ̄
]

˙̄z = −h −�− (L ⊗ Im)λ̄˙̄λ = (L ⊗ Im)z̄

(26)

where x̂ = col(x̂1, . . . , x̂N) ∈ R
nN,h and � are determined by

hi and �i.
Perform another coordinate transformation: λ̂1 = (r� ⊗

Im)λ̄, λ̂2 = (R� ⊗ Im)λ̄. Since (r� ⊗ Im)
˙̄λ = 0, it follows

that λ̂1 ≡ 0 and:
⎧
⎪⎨

⎪⎩

˙̂x = 1
ε
(IN ⊗ Am)x̂ + (IN × bm)�̄

˙̄z = −h −�− (LR ⊗ Im)λ̂2˙̂
λ2 = (R�L ⊗ Im

)
z̄

(27)

where �̄ = −h −�− (LR ⊗ Im)λ̂2.
Let ẑ � col(z̄, λ̂2). It can be easily verified that � is

ϑ-Lipschitz in x − z and hence x̂. Note that �̄ is also ϑ̄1-
Lipschitz in λ̂2 for a positive constant ϑ̄1. Thus, there exists
positive constants ϑ̄2 and ϑ̄3 such that ‖�̄‖ ≤ ϑ̄2‖x̂‖ + ϑ̄3‖ẑ‖.

Next, we invoke a small-gain technique on (27) to prove this
theorem via tuning ε. By Lemma 2 or the proof of Lemma 3,
the following (nominal) system

{ ˙̄z = −h − (LR ⊗ Im)λ̂2˙̄λ2 = (R�L ⊗ Im
)
z̄

(28)

is globally exponentially stable under the given assumptions.
Recalling the Lipschitzness of h in z̄, we then apply the

converse Lyapunov theorem [40, Th. 4.15] to this system, that
is, there is a continuously differentiable Lyapunov function
V1(·) such that

ĉ1
∥
∥ẑ
∥
∥2 ≤ V1

(
ẑ
) ≤ ĉ2

∥
∥ẑ
∥
∥2

∂V1

∂ z̄

[
−h − (LR ⊗ Im)λ̂2

]
+ ∂V1

∂λ̄2

[(
R�L ⊗ Im

)
z
]

≤ −ĉ3
∥
∥ẑ
∥
∥2

∥
∥
∥
∥
∂V1

∂ ẑ

∥
∥
∥
∥ ≤ ĉ4

∥
∥ẑ
∥
∥

for some positive constants ĉ1, ĉ2, ĉ3, and ĉ4.
Since Am is Hurwitz, there is a positive definite matrix Pm ∈

R
nm×nm satisfying A�

mPm+PmAm = −Inm. We take a quadratic
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Lyapunov function V = x̂�(IN⊗Pm)x̂+V1(ẑ), whose derivative
along the trajectory of system (27) is

V̇ = 2x̂�(IN ⊗ Pm)

[
1

ε
(IN ⊗ Am)x̂ + (IN × bm)�̄ − ∂V1

∂ ẑ
˙̂z

≤ 1

ε
x̂�[IN ⊗

(
PmAm + A�

mPm

)]
x̂ + 2x̂�(IN ⊗ Pmbm)�̄

+ ∂V1

∂ z̄

[
−h − (LR ⊗ Im)λ̂2

]
+ ∂V1

∂λ̄2

(
R�L ⊗ Im

)
z

− ∂V1

∂ z̄
�

≤ −1

ε

∥
∥x̂
∥
∥2 + ϑ̂2

∥
∥x̂
∥
∥2 + ϑ̂3

∥
∥x̂
∥
∥
∥
∥ẑ
∥
∥− ĉ3

∥
∥ẑ
∥
∥2 + ĉ4ϑ

∥
∥x̂
∥
∥‖z̄‖

≤ −
(

1

ε
− ϑ̂2

)
∥
∥x̂
∥
∥2 + ϑ̂4

∥
∥x̂
∥
∥
∥
∥ẑ
∥
∥− ĉ3

∥
∥ẑ
∥
∥2

where ϑ̂2 = 2ϑ̄2‖(IN ⊗Pmbm)‖, ϑ̂3 = 2ϑ̄3‖(IN ⊗Pmbm)‖, and
ϑ̂4 = ϑ̂3 + ĉ4ϑ .

By the Young’s inequality, we have

V̇ ≤ −
(

1

ε
− ϑ̂2

)
∥
∥x̂
∥
∥2 + ϑ̂2

4

2ĉ3

∥
∥x̂
∥
∥2 + ĉ3

2

∥
∥ẑ
∥
∥2 − ĉ3

∥
∥ẑ
∥
∥2

= −
(

1

ε
− ϑ̂2 − ϑ̂2

4

2ĉ3

)
∥
∥x̂
∥
∥2 − ĉ3

2

∥
∥ẑ
∥
∥2
.

We take

ε∗ = 2ĉ3

2ĉ3ϑ̂2 + ϑ̂2
4

(29)

and obtain that for any ε ∈ (0, ε∗)

V̇ ≤ −
(

1

ε
− 1

ε∗

)
∥
∥x̂
∥
∥2 − ĉ3

2

∥
∥ẑ
∥
∥2

which implies the exponential stability of (27) and therefore,
the exponential convergence of xi with respect to y∗ as t → ∞.
Thus, the proof is complete.

Based on Theorem 4 and the normal form (10a), we go back
to investigate linear minimum-phase agents of the form (3) and
the following controller is readily obtained, that is:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ũi = R̃−1
(−ϒχa

i − Sχb
i + ui

)

vi = − 1
εn

[
c0( yi − zi)+∑n−1

k=1 ε
kcky(k)i

]

żi = −∇fi( yi)−∑N
j=1 aij

(
λi − λj

)

λ̇i =∑N
j=1 aij

(
zi − zj

)

(30)

where c1, . . . , cn−1 are selected as that in Theorem 4, and the
relationship between ui and vi is described by (9).

Here is our main result of (30) on general linear systems
based on the embedded control scheme.

Theorem 5: Suppose Assumptions 1, 2, and 4 hold. Then
there is a constant ε∗ > 0 such that the optimal output con-
sensus problem (5) with agents of the form (3) is solved by
the control (30) for any ε ∈ (0, ε∗). Moreover, yi(t) converges
to y∗ exponentially as t → ∞ for i = 1, . . . ,N.

Proof: Following similar arguments in the proof of
Theorem 2. Clearly, the subsystem (10b) and (10c) is
equivalent to the nth-order integrator. Let χ̃a

i = χa
i −

χa
i

∗, χ̃b
i = χb

i − χb
i

∗
[where (χa

i
∗, χb

i
∗
) is the equilibrium

point of (10a) and (10b) determined by y∗] and take a sim-
ilar coordinate transformation as that given in Theorem 4.
Then the whole error system can be expressed in a cascaded
form
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̃χa
i = �χ̃a

i +�χ̃b
i

˙̂χc
i = 1

ε
Amχ̂

c
i + bm

[
−hi −�i −∑N

j=1 aij
(
λ̄i − λ̄j

)]

˙̄zi = −hi −�i −∑N
j=1 aij

(
λ̄i − λ̄j

)

˙̄λi =∑N
j=1 aij

(
z̄i − z̄j

)
.

Note that the matrix � is Hurwitz and �χ̃b
i is Lipschitz

with respect to (χ̂c
i , z̄i). Set ε∗ as defined in (29) and by the

proof of Theorem 4, the subsystem (χ̂c
i , z̄i, λ̄i) is then glob-

ally exponentially stable with respect to its equilibrium point
under control input vi for any 0 < ε < ε∗. Global exponen-
tial stability of the above cascaded system can be obtained by
Lemma 4, which implies that the state trajectory of this agent
is bounded and its output yi converges to y∗ exponentially as
t → ∞. The proof is thus complete.

It can be found that for the given multiagent system, the
tracking control of each agent can be achieved by tuning only
one input parameter ε. For different optimization problems,
we can simply replace the local cost function fi(·) in the
optimal signal generator and then adjust the gain parameter ε,
which transforms a controller design problem into a parameter-
tuning one. Therefore, the embedded control scheme is much
simpler than redesigning a complete new algorithm for these
high-order agents, which may be favorable in large-scale
networks.

Remark 7: Similar problems have been investigated for
the first-order system [17], [18] with vector relative degree
(1, . . . , 1) and the second-order system [27], [28] with vec-
tor relative degree (2, . . . , 2). It is remarkable that the optimal
signal generator used here actually has decoupled the complex-
ity of optimization task from that of the high-order dynamics
tracking problem, which may facilitate the design for even
more complex agent dynamics.

Next, let us consider its output feedback version. As in
case I, by attaching the high-gain observer (23), we have the
following distributed control for system (3):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ũi = R̃−1
(−ϒχ̂a

i − Sχ̂b
i + ui

)

vi = − 1
εn

[
c0( yi − zi)+∑n−1

k=1 ε
kckŷ(k)i

]

żi = −∇fi( yi)−∑N
j=1 aij(λi − λj)

λ̇i =∑N
j=1 aij(zi − zj)

(31)

where c0, . . . , cn−1 are defined as before and ε > 0 is to be
determined later.

We then have the following theorem for this design.
Theorem 6: Suppose Assumptions 1, 2, and 4 hold. Then

there is a constant ε∗ > 0 such that the optimal output consen-
sus problem (5) with agents of the form (3) is solved by (31)
for any ε ∈ (0, ε∗). Moreover, yi(t) converge to the optimal
solution y∗ exponentially as t → ∞ for i = 1, . . . ,N.

Proof: The proof is similar to Theorem 3. In fact, following
the same arguments, we only have to prove the stability of the
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whole error system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃χa
i = �χ̃a

i +�χ̃b
i

˙̂χc
i = 1

ε
Amχ̂

c
i + bm

[
−hi −�i −∑N

j=1 aij
(
λ̄i − λ̄j

)]+ �i

˙̄zi = −hi −�i −∑N
j=1 aij

(
λ̄i − λ̄j

)

˙̄λi =∑N
j=1 aij

(
z̄i − z̄j

)

˙̄χa
i = �χ̄a

i +�χ̄b
i˙̄ei = (Al ⊗ Im)ēi

where �i is Lipschitz in (χ̄a
i , ēi) determined by (7) and (31).

This system is again in a cascaded form. Choosing ε∗ as
defined in (29), one can obtain its global exponential stability
for any ε ∈ (0, ε∗) under Assumption 4 by Lemma 4 and
Theorem 5. Hence, the proof is complete.

Remark 8: In practice, bounded uncertainties may come
from the communication noise and gradient calculation.
Suppose Assumptions 1, 2, and 4 hold, it can be easily veri-
fied that our algorithm is robust in the sense of bounded-input
bounded-output stability with respect to those uncertainties as
its input and approximation error of yi − y∗

i as its output. In
fact, we can make the approximation error arbitrarily small by
adjusting the gain parameter ε.

Remark 9: As we remarked before, the optimal output
consensus problem is a combination of the two hot top-
ics: 1) output consensus of high-order agents [6]–[9] and
2) distributed optimization for single integrators [15]–[18].
Due to the couplings between the distributed optimization
requirement and high-order dynamic processes, it is much
more challenging than traditional distributed optimization or
output consensus problem. This is why we come up with the
optimal signal generator to decouple the optimization design
from the dynamics in order to simplify the whole design com-
plexities. Compared with the new result given in [29], this
embedded scheme leads to a generally constructive way to
solve the problem.

V. SIMULATIONS

In this section, we present two examples to illustrate our
problem and the effectiveness of our designs.

Example 1: Consider an optimal rendezvous problem [8] of
wheeled robots with the following dynamics:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṙx
i = vi cos(θi)

ṙy
i = vi sin(θi)

θ̇i = ωi

v̇i = 1
mi

Fi

ω̇i = 1
Ji
τi

where (rx
i , ry

i , θi) are the inertia center’s position and orien-
tation of the ith robot, (vi, ωi) the linear and angular speed,
(Fi, τi) the applied force and torque, (mi, Ji) the mass and
moment of inertia for i = 1, . . . , 5. Let di represent the dis-
tance between the hand position and inertia center of the ith
robot. Applying feedback linearization as in [8] about the hand
position x̃i � (rx

i + di cos(θi), ry
i + di sin(θi)) yields a simple

linear dynamics as follows:

˙̃xi = ṽi, ˙̃vi = ũi, yi = x̃i.

It apparently satisfies Assumption 1 with relative degree (2, 2).

Fig. 2. Interaction topology of the multiagent system.

Fig. 3. Rendezvous of five mobile robots under state feedback control (18).

To drive all hands of robots to rendezvous at a com-
mon point that minimizes the aggregate distance from their
starting points to this final location, the cost functions sat-
isfying Assumption 4 are as fi( y) = (1/2)‖y − yi(0)‖2 and
f ( y) = (1/2)

∑5
i=1 ‖y − yi(0)‖2 (i = 1, . . . , 5). We can eas-

ily check that the optimal solution of the global cost function
is Aver( y(0)) � (1/N)

∑N
i=1 yi(0). The communication graph

among these robots satisfying Assumption 2 is depicted as
Fig. 2 with all the edge weights as 1. Recalling Theorem 1,
the rendezvous problem can be solved by controller (18).

Because ∇fi( y) = y − yi(0), the generator (16) reduces to
{

żi = −(zi − yi(0))−∑N
j=1 aij

(
λi − λj

)

λ̇i =∑N
j=1 aij

(
zi − zj

)
.

Thus, the state feedback control (18) is as follows:
⎧
⎪⎨

⎪⎩

ũi = − 1
ε2

[
c0( yi − zi)+ εc1ṽi

]

żi = −(zi − yi(0))−∑N
j=1 aij

(
λi − λj

)

λ̇i =∑N
j=1 aij

(
zi − zj

)
.

Take c0 = 4, c1 = 8, ε = 1 and all initials (randomly)
in [−10, 10]8. The local minimizers, i.e., their initial points,
are marked by diamonds, the global optimal solution y∗ by a
circle. The simulation result is given in Fig. 3 and all robots
achieve the optimal rendezvous at y∗.

Example 2. To verify the effectiveness of our embedded
design, we then consider a high-order multiagent system
modified from [7] with more complex objective functions

˙̃xi = Ãx̃i + B̃ũi, yi = C̃x̃i, i = 1, . . . , 5 (32)

where

Ã =

⎡

⎢
⎢
⎣

0.1 0.1 −2.5 0.5
0 −0.4 0 −1.5
2 0 0 −1
0 0.2 1 0.8

⎤

⎥
⎥
⎦, B̃ =

⎡

⎢
⎢
⎣

1 0
0 1
0 0
1 1

⎤

⎥
⎥
⎦
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Fig. 4. Phase portraits of yi under output feedback control (31).

C̃ =
[

0 0 1 0
0 0 0 1

]

.

The local cost functions are as follows:

f1( y) = ( ya − 8)2 + ( yb − 1)2

f2( y) = y2
a

20
√

(ya)
2 + 1

+ y2
b

20
√

(yb)
2 + 1

+ ‖y‖2

f3( y) = (ya)
2

80 ln
(
(ya)

2 + 2
) + (yb)

2

80 ln
(
(yb)

2 + 2
) + ‖y − 5 × 12‖2

f4( y) = ln
(

e−0.05ya + e0.05ya
)

+ ln
(

e−0.05yb + e0.05yb
)

+ ‖y‖2

f5( y) = y2
a

25
√

(ya)
2 + 1

+ y2
b

25
√

(yb)
2 + 1

+ ‖y‖2 + 1�
2 y

where y = [ya yb]T . The interaction topology of this
multiagent system is still taken as Fig. 2. It can be veri-
fied that the vector relative degree of agents is (2, 1) and
Assumptions 1–4 hold. Additionally, y∗

a = 2.5, y∗
b = 1.1 by

minimizing the global cost function f ( y) =∑5
i=1 f ∗

i ( y).
Assume that agents only have real-time gradients. Recalling

Theorem 6, this output optimal consensus problem can be
solved by output feedback controller (31).

In fact, by taking φι = [ 1, 1, 0,−1 ], the system (32) can
be put into (6) as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χ̇a
i = −0.5χa

i + [−3.5, 0.3,−2]χb
i

ξ̇ ib
11 = ξ ib

12
ξ̇ ib

12 = [−6, 0.1, 0.3]χb
i + [1,−1]ũi

ξ̇ ib
21 = 0.2χa

i + [1,−0.1, 0.9]χb
i + [1, 1]ũi

yi = col
(
ξ ib

11, ξ
ib
21

)

where R̃ = [1,−1; 1, 1].
Thus, the whole controller is given as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũi =
[ −0.1χ̂a

i + 2.5ξ̂ ib
11 − 0.6ξ̂ ib

21 + 0.5ui1 + 0.5ui2

−0.1χ̂a
i − 3.5ξ̂ ib

11 − 0.3ξ̂ ib
21 + 0.1ξ̂ ib

12 − 0.5ui1 + 0.5ui2

]

ui1 = vi1, u̇i2 = vi2

vi =
[

vi1

vi2

]

= − 1
ε2

[
c0( yi − zi)+ εc1y(1)i

]

żi = −∇fi( yi)−∑N
j=1 aij

(
λi − λj

)

λ̇i =∑N
j=1 aij

(
zi − zj

)

Fig. 5. Profiles of all components in yi under output feedback control (31).

where ŷi = col(ξ̂ ib
11, ξ̂

ib
21), ŷ(1)i = col(ξ̂ ib

12, ûi2), and χ̂a
i are

generated by the following observer:
⎧
⎪⎨

⎪⎩

˙̂yi = ŷ(1)i − l1
(
ŷi − yi

)

˙̂y(1)i = vi − l2
(
ŷi − yi

)

˙̂χa
i = −3χ̂a

i + [−3.5, 0.3,−2]χ̂b
i .

Take c0 = 4, c1 = 8, l1 = 4, l2 = 8, ε = 1, and all initials
are generated (randomly) in [−10, 10]14. This output optimal
consensus problem can be solved by the output feedback con-
troller (31). The simulation results are given in Figs. 4 and 5
and all the outputs converge to the global optimal point.

VI. CONCLUSION

This paper has investigated the optimal output consensus
problem for high-order minimum-phase multiagent systems.
An embedded control scheme has been proposed and applied
to solve this problem based on the introduction of an optimal
signal generator. The proposed algorithms have been proved
to converge to the optimal solution asymptotically or expo-
nentially with different conditions. In fact, many challenging
optimal output consensus problems remain to be done, includ-
ing the cases of practical and nonlinear agents, or various
uncertainties from communication or environment, or different
optimization constraints.
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