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Abstract: In this study, a multi-agent coordination problem with steady-state regulation constraints is investigated for a class of
non-linear systems. Unlike the existing leader-following coordination formulations, a reference signal is not given by a dynamic
autonomous leader but determined as the optimal solution of a distributed optimisation problem. Furthermore, the authors
consider a global constraint having noisy data observations for the optimisation problem, which implies that the reference signal
is not trivially available with the existing optimisation algorithms. To handle these challenges, the authors present a passivity-
based analysis and design approach by using only local objective function, local data observation and exchanged information
from their neighbours. The proposed distributed algorithms are shown to achieve the optimal steady-state regulation by rejecting
the unknown observation disturbances for passive non-linear agents, which are persuasive in various practical problems.
Applications and simulation examples are then given to verify the effectiveness of the proposed design.

1 Introduction
Over the last decade, there has been an increasing percentage of
literature concerning the coordination problem of multi-agent
systems due to its wide applications in engineering systems. e.g.
multi-robot system and wireless network (see [1–3] and references
therein). As one fundamental problem of this topic, leader-
following coordination has been widely studied [4–8]. In this
problem, a (virtual) leader is often set up to generate reference
signals for each agent to follow, while this leader is usually given
as a known dynamic system with possible unknown states. Then
the main task is to determine the agents' controllers, which should
only utilise local information, such that the resultant state or output
trajectories of the agents can track the reference signal generated
by the leader. This leader-following formulation has been
extensively embodied into various effective algorithms for
practical engineering problems, e.g. formation control and attitude
synchronisation [2, 9].

Here, we follow this line but consider a particular case when the
reference signal is not generated as the trajectory of an autonomous
leader, but as the unknown optimal solution of distributed
optimisation problems. This type of problem arises naturally from
many practical applications. For example, in a source seeking
problem, we aim to control one or more agents with non-linear
dynamics to seek the extremum of some unknown signal fields
based on local signal measurements. Thus the reference (although a
constant) is neither available in advance nor can be generated by an
autonomous leader without real-time measurements and
computations. Many other practical engineering applications have
a similar feature that the reference signal is a (time-varying)
maximum or minimum of some performance functions, e.g. the
design of anti-lock braking systems [10], optimal rendezvous of
unmanned aerial vehicles [11]. Moreover, practically each agent
can only access noisy local observations/measurements. How to
solve these optimal regulation problems over multi-agent systems
with data locality and impurity is important and challenging.

Furthermore, the so-called distributed optimisation becomes
more and more popular with its broad applications in various fields
such as intersection computation [12] and smart grids [13]. In this
problem, each agent only knows its own local cost function, and
may only know its locally observable data. The agents aim to
cooperatively achieve a consensus on their states and optimise the
sum of all local cost functions. Both discrete-time and continuous-

time gradient-based optimisation algorithms were proposed [14–
17]. In fact, we can regard this problem as a leader-following
problem when the agents are single integrators and the reference
signal is determined as the optimal solution. We may wonder its
solvability when agents are of high-order physical processes, e.g.
motion of mobile sensors and the dynamics of the inventory
system. Since the decision variables are determined as outputs of
high-order non-linear dynamic systems that essentially cannot be
treated as single integrators, the solvability of those distributed
optimisation problems over physical dynamics can be much more
challenging than the conventional cases.

Based on these observations, we aim to formulate and
investigate a distributed coordination problem over high-order non-
linear multi-agent systems where the reference signal is determined
as the optimal solution to a constrained optimisation problem.
Specifically, we consider a class of passive non-linear agents, and
the output variables are regulated according to a distributed
resource allocation problem. The goal is then to regulate these
outputs to the optimal solution of the associated optimisation
problem in a distributed way.

In fact, very few optimisation results have been obtained on this
topic with agents with high-order dynamics, though there are
plenty of conclusions obtained for integrator-type agents as
mentioned above. Since practical systems are hardly described by
single integrators, we have to take high-order dynamics into
consideration. For example, for double integrators, Zhang and
Hong [18] proposed a distributed optimisation algorithm with an
integral control idea and a similar design was employed for
Lagrangian agents [19]. Distributed optimisation with input
disturbances was also considered in [20] by an internal-model
approach for a class of non-linear minimum phase agents. An
important engineering problem related to this topic is the economic
dispatch in power systems. While economic dispatch can be
formulated and solved as a distributed optimisation problem [21,
22], frequency dynamics were taken into consideration in [23] and
an optimisation requirement on the steady-state inputs should be
satisfied. An internal-model based controller was proposed to solve
the optimal frequency regulation problem in power grids under
unknown and possible time-varying load changes. Generally,
resource allocation over non-linear multi-agent systems is still far
from being solved.
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In view of the aforementioned results, the main contributions of
this study are at least two-fold:

(i) A general multi-agent coordination problem with regulation
constraints is formulated for a class of non-linear agents. Since the
steady-state of each agent cannot be determined in a centralised
way and can only be determined asymptotically through a
distributed computation within the networks, it can be taken as
distributed extensions of conventional steady-state regulation
problems [10, 24]. Distributed algorithms are proposed to solve
this problem by using only local data and exchanged information
from their neighbours, along with both the asymptotic and
exponential convergence results, while only local and asymptotic
results were considered in [24].
(ii) A passivity-based approach is adopted to distributedly solve the
resource allocation problem over high-order non-linear multi-agent
systems. When agents are single integrators without observation
disturbances, this problem reduces to the conventional distributed
resource allocation problem [21, 22]. Note that the decision
variables are outputs of physical plants with high-order non-linear
dynamics, and hence this problem is much more challenging than
traditional cases. This work shows that the passivity-based
approach could provide a fresh design methodology to solve this
kind of problem for high-order dynamic agents, including
distributed inventory control [25] and average consensus problem
[2, 26].

Additionally, unknown data observation disturbances are
considered in our formulation and then rejected by an observer-
based compensator. This approach is different from the existing
internal model-based designs [20, 23, 27], and may provide new
perspectives and approaches to deal with this kind of problem.

The paper is organised as follows. Preliminaries about convex
analysis, graph theory and passivity are given in Section 2. Then
the problem of distributed coordination with regulation constraints
is formulated for a class of non-linear multi-agent systems in
Section 3. Main results are presented and proved in Section 4 along
with the proposed gradient-based controls. Following that, three
applications are given with discussions in Section 5 to illustrate the
applicability and effectiveness of the proposed algorithm. Finally,
concluding remarks are given in Section 6.

Notations: let ℝn be the n-dimensional Euclidean space. For a
vector x, | | x | | denotes its Euclidean norm. 1N (and 0N) denotes an
N-dimensional all-one (and all-zero) column vector.
col(a1, …, an) = [a1

⊤, …, an
⊤]⊤ for column vectors ai (i = 1, …, n).

rN = (1/ N)1N, and RN ∈ ℝN × (N − 1) satisfying RN
⊤rN = 0N,

RN
⊤RN = IN − 1 and RNRN

⊤ = IN − rNrN
⊤.

2 Preliminaries
In this section, preliminaries are given about convex analysis [28],
graph theory [29] and system passivity [30].

2.1 Convex analysis

A function f ( ⋅ ):ℝN → ℝ is said to be convex if for any 0 ≤ a ≤ 1,

f (aζ1 + (1 − a)ζ2) ≤ a f (ζ1) + (1 − a) f (ζ2), ∀ ζ1, ζ2 ∈ ℝN .

A differentiable function f is convex over ℝN if

f (ζ1) − f (ζ2) ≥ ∇ f (ζ2)T(ζ1 − ζ2), ∀ ζ1, ζ2 ∈ ℝN (1)

and f is strictly convex over ℝN if the above inequality is strict
whenever ζ1 ≠ ζ2, and f is ω-strongly convex (ω > 0) over ℝN if
∀ ζ1, ζ2 ∈ ℝN

(∇ f (ζ1) − ∇ f (ζ2))T(ζ1 − ζ2) ≥ ω ∥ ζ1 − ζ2 ∥2 . (2)

A function f :ℝN → ℝN is Lipschitz with constant M > 0, or
simply M-Lipschitz, if

∥ f (ζ1) − f (ζ2) ∥ ≤ M ∥ ζ1 − ζ2 ∥ , ∀ζ1, ζ2 ∈ ℝN .

2.2 Graph theory

A weighted undirected graph is described by G = (N, ℰ, A) with a
node set N = {1, …, N} and an edge set ℰ. (i, j) ∈ ℰ denotes an
edge between nodes i and j. The weighted adjacency matrix
A = [ai j] ∈ ℝN × N is defined by aii = 0 and ai j = aji ≥ 0 (ai j > 0 if
and only if there is an edge between nodes i and j). The neighbour
set of node i is defined as Ni = { j: ( j, i) ∈ ℰ} for i = 1, …, n. A
path in graph G is an alternating sequence i1e1i2e2…ek − 1ik of nodes il
and edges em = (im, im + 1) ∈ ℰ for l = 1, 2, …, k. If there is a path
between any two vertexes of a graph G, then the graph is said to be
connected. The Laplacian L = [li j] ∈ ℝN × N of graph G is defined
as lii = ∑ j ≠ i ai j and li j = − ai j( j ≠ i), which is thus symmetric.
Denote the eigenvalues of Laplacian matrix L associated with an
undirected graph G as λ1 ≤ … ≤ λN.

2.3 System passivity

Passivity, due to its explicit physical meaning and simplicity to
manipulate, has been extensively discussed in controlling various
practical engineering systems (see [30] and references therein).
Usually, only the case when the equilibrium point is zero is
investigated. However, when desirable regulation points are
specified as solutions to optimisation problems, we do not know
the optimal point beforehand and have to go back to the general
case with non-zero equilibrium points, which has been named as
incremental passivity in the literature [31–34].

Consider a dynamic system of the following form:

ẋ = g(x, u), y = h(x), x ∈ ℝn, u, y ∈ ℝp . (3)

Let E = {(x∗, u∗) ∣ g(x∗, u∗) = 0} be the equilibrium points of this
system. System (3) is said to be passive with respect to (w.r.t.)
(x∗, u∗) if there exist two functions α1( ⋅ ), α2( ⋅ ) ∈ K∞ and a
continuously differentiable storage function V(x, x∗) satisfying that

(i) α1( | | x − x∗ | | ) ≤ V(x, x∗) ≤ α2( | | x − x∗ | | ).
(ii) V̇ ≤ (y − y∗)⊤(u − u∗) with y∗ = h(x∗),

where V̇  is short for V̇(x, x∗) ≜ (∂V /∂x)(x, x∗)ẋ.
When the second condition is strengthened as

V̇ ≤ − α3( | | x − x∗ | | ) + (y − y∗)⊤(u − u∗)

for some function α3( ⋅ ) ∈ K, this system is said to be strictly
passive w.r.t. (x∗, u∗). If α1( ⋅ ), α2( ⋅ ), α3( ⋅ ) can be taken as
quadratic functions, this system is said to be exponentially passive
w.r.t. (x∗, u∗). For consistence, a memoryless function
ϕ:D ⊂ ℝn → ℝn is passive w.r.t. y∗ ∈ ℝn if it satisfies

(y − y∗)⊤(ϕ(y) − ϕ(y∗)) ≥ 0, ∀y ∈ D . (4)

When the equality occurs only if y = y∗, we say it is strictly passive
w.r.t. y∗. Additionally, when there exists a constant γ > 0 such that

(y − y∗)⊤(ϕ(y) − ϕ(y∗)) ≥ γ | | y − y∗ | |2 , ∀y ∈ D,

it is exponentially passive with modulus γ w.r.t. y∗.
In this study, we only consider the single-input single-output

case, i.e. p = 1, while the following arguments hold for the multi-
input multi-output case with p > 1 as well. For a given passive
system w.r.t. (x∗, u∗), this equilibrium is said to be assignable if
there exists a passive ϕ( ⋅ ) satisfying ϕ(y∗) + u∗ = 0. The following
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lemma presents an important approach to stabilise non-linear
passive systems.

 
Lemma 1: Suppose system (3) is passive w.r.t. an assignable

equilibrium (x∗, u∗), then, x = x∗ is Lyapunov stable under
u = − ϕ(y). If ϕ( ⋅ ) is strictly passive w.r.t. y∗, we have y(t) → y∗

as t goes to infinity. Moreover, the trajectory x converges to x∗

exponentially fast if system (3) is exponentially passive w.r.t.
(x∗, u∗).

 
Proof: The proof follows standard Lyapunov arguments. In fact,

when the system is passive w.r.t. (x∗, u∗), we have a continuously
differentiable storage function V(x, x∗) and functions α1, α2 ∈ K∞
satisfying: α1( | | x − x∗ | | ) ≤ V(x, x∗) ≤ α2( | | x − x∗ | | ) and
V̇ ≤ (y − y∗)⊤(u − u∗) with y∗ = h(x∗).

By taking u = − ϕ(y), we have V̇ ≤ − (y − y∗)⊤(ϕ(y) − ϕ(y∗)).
From the strict passivity of ϕ( ⋅ ), it implies V̇ ≤ 0 and the equation
happens only if y = y∗. By LaSalle's invariance principle [30] and
the smoothness of h( ⋅ ), we can obtain x(t) converges to the largest
invariant set contained in {x ∈ ℝn |h(x) = h(x∗)} as t → + ∞,
which implies y(t) → y∗ as t goes to infinity.

When this system is exponentially passive, we further have
k1 | | x − x∗ | |2 ≤ V(x, x∗) ≤ k2 | | x − x∗ | |2 and V̇ ≤ − k3 | | x − x∗ | |2,
which imply the exponential convergence of x w.r.t. x∗. □

By this lemma, the asymptotic regulation of y to y∗ is
transformed into a problem that is to find a passive function ϕ(y)
satisfying ϕ(y∗) + u∗ = 0. For a special case when x∗ = 0, u∗ = 0,
we need to find a monotone (passive) function ϕ( ⋅ ) vanishing at
the origin, which is consistent with the existing results. It is well
known that every continuous (strictly, strongly) convex function
has its derivative (including gradients as its special cases) as an
associated (strictly, exponentially) passive function w.r.t. the
minimum point [35]. This observation will play a key motivation
for our gradient-based algorithm design when we do not have the
direct information of x∗ and hence y∗. Although we consider
gradient-based designs, various functions (not limited to gradients)
can be employed in a passivity-based design for different problems,
e.g. skew-symmetric linear operators and saddle-point operators
[35, 36].

3 Problem formulation
Consider N agents with dynamics of the form

ẋi = gi(xi, ui), yi = hi(xi), i = 1, …, N (5)

with state variable xi ∈ ℝni, control input ui ∈ ℝ, and output yi ∈ ℝ.
The functions gi( ⋅ ) and hi( ⋅ ) are assumed to be smooth.

Along with node dynamics, the ith agent has a local cost
function f i(yi). For this multi-agent system, we associate it an
optimisation problem with coupled constraints as follows:

minimize f (y) ≜ ∑
i = 1

N
f i(yi),

subject to ∑i = 1

N yi = ∑i = 1

N di
0,

(6)

where di
0 can only be obtained by agent i by local measurements.

This optimisation problem is often called resource allocation [37]
and many practical applications can be formulated as the above,
e.g. economic dispatch in power systems [22], flow control in
networks [37]. We can regard yi as the amount of resource located
at node i and interpret − f i(yi) as the local (concave) utility
function. Coupled with the physical agents, we aim to design
proper controllers such that the outputs of these agents
asymptotically solve the optimisation problem (6). This implies the
above optimisation problem is a requirement on the steady-state of
this multi-agent system. In other words, the controller should
regulate the systems' outputs such that the equality constraint is

satisfied and optimal performance is achieved, both in an
asymptotic manner.

Moreover, we are interested in distributed algorithms without
setting up a centralised working station which might be expensive
and inhibitive in some circumstances. Namely, we aim to find a
distributed protocol using only local objective function, constraint-
related observation, and exchanged information from their
neighbours to drive the outputs of agents to reach an allocation that
maximises the total utility −∑i = 1

N f i(yi). For this purpose, an
undirected graph G is employed to describe the information
sharing relationships among those nodes represented by
N = {1, …, N}. If nodes i and j can exchange information with
each other, then there is an edge (i,j) in the graph G, i.e.
ai j = aji > 0.

Furthermore, we assume agent i can only get a polluted
observation di(t) ≜ di

0 + di
ε(t) of di

0 by an imperfect sensor, where
the disturbance is assumed consisting of ki sinusoidal signals with
distinct but known frequencies: ωi1, …, ωiki. In fact, this type of
disturbance can produce a fair approximation of any bounded
periodic disturbance signal by summing up the dominated
harmonics in its Fourier series expansion and has been used as
typical non-trivial disturbances in the control literature [38, 39].

We then formulate the distributed coordination problem for
non-linear multi-agent systems with steady-state regulation
constraints as follows. Given the graph G, cost function f i( ⋅ ) and
dynamic plant (5), find a distributed control ui for agent i, which
only depends on its own local data and exchanged information
from its neighbours, such that the trajectories of agents are
bounded and satisfy

lim
t → + ∞ yi = yi

∗, for i = 1, …, N

where col(y1
∗, …, yN

∗ ) is the optimal solution of (6).
 
Remark 1: Unlike the existing leader-following coordination

problems in multi-agent systems [2, 4, 7], the reference signal
cannot be modelled as an autonomous leader. In fact, the desired
steady states can only be obtained by a distributed cooperation and
computation. On the other hand, when f i(yi) = (1/2)yi

2 and
di

0 = yi(0), the optimal solution of (6) is (∑i = 1
N yi(0))/N)1N. Our

formulation provides another way to solve the well-known average
consensus problem for non-linear dynamic agents [2, 26, 40].

Our formulation can be taken as a constrained optimisation
problem subject to noisy constraint data observations. Compared
with the traditional stochastic or the worst-case formulation in
robust optimisation, the observation perturbations/uncertainties
here are modelled as structured but unknown ones, which can be
deemed as a balance on available information of perturbations
between its nominal version and stochastic/worst-case version.

To achieve a coordination among these agents, some technical
assumptions are needed.

 
Assumption 1: For i = 1, …, N, the function f i:ℝ → ℝ is

convex, twice continuously differentiable with bounded Hessian,
i.e. there exist 0 < hi ≤ hi < ∞ such that, for all i:

hi ≤ ∇2 f i(s) ≤ hi, ∀s ∈ ℝ .
 
Assumption 2: The communication graph G is connected.
The assumptions have been widely used in many publications

[8, 29, 41]. Assumption 1 is made to guarantee the solvability of
this optimisation problem. In fact, it implies the Lipschitz
continuity of ∇ f i and strong convexity of f i. Then, the
optimisation problem (6) is solvable and has a unique solution
y∗ = col(y1

∗, …, yN
∗ ) by Proposition 3.2.1 in [28]. It is well known

[29] that under Assumption 2, the associated Laplacian L of this
graph is symmetric with rank N − 1, and its null space is spanned
by 1N.

Another technical assumption is made as follows.

IET Control Theory Appl., 2018, Vol. 12 Iss. 1, pp. 1-9
© The Institution of Engineering and Technology 2017

3



 
Assumption 3: For any i ∈ {1, …, N} and constant output r,

there exist two unique smooth functions xi( ⋅ ) and ui( ⋅ ) satisfying

gi(xi(r), ui(r)) = 0, r = hi(xi(r)) . (7)

Furthermore, the function ui( ⋅ ) is Mi-Lipschitz at its arguments on
the concerned set.

Note that our problem is essentially an asymptotic regulation
problem where the reference is determined by the optimisation
problem (6), thereby, Assumption 3 can be understood as the
existence of the solution to regulator equations in the terminology
of output regulation. The Lipschitzness of ui( ⋅ ) is only made for
technical analysis, and it naturally holds when the concerned sets
are compact. Similar assumptions can be found in [30, 38].

Denoting xi
∗ = xi(yi

∗) and ui
∗ = ui(yi

∗), we then focus on a class of
passive non-linear dynamic systems as follows.

 
Assumption 4: For i = 1, …, N, the dynamics (5) is passive

w.r.t. (yi
∗, xi

∗, ui
∗), i.e. there exists a continuously differentiable

storage function Vi(xi, xi
∗) satisfying αi1( | | xi − xi

∗ | | ) ≤ Vi(xi, xi
∗) ≤

αi2( | | xi − xi
∗ | | ) for two K∞ functions αi1( ⋅ ) and αi2( ⋅ ) such that

V̇ i ≤ (yi − yi
∗)⊤(ui − ui

∗) .
As mentioned before, this condition is an extended version of a
classical passivity property w.r.t. non-zero equilibrium (by non-
zero inputs). In fact, it has been termed as incremental passivity
property in many publications [31–34], and a large class of typical
systems falls into this class perhaps after an inner feedback
passivation loop. Notice that Assumption 4 only concerns with the
dynamics of the non-linear agents and imposes no restrictions on
the optimisation problem.

In the following section, we solve the distributed coordination
problem with regulation constraints by passivity-based arguments.

4 Main results
In this section, we propose a distributed algorithm to solve the
distributed coordination problem determined by (5) and (6), and
then prove its stability via passivity techniques.

First, we split the control efforts into two parts ui = ui
1 + ui

2,
where ui

1 is designed for distributed optimisation with disturbance
rejection, and ui

2 for asymptotic steady-state regulation.
Inspired by works [22, 37, 41], the optimisation problem (6) can

be rewritten as a monotropic programming problem and solved by
a primal-dual approach if d0 is known. Since there are observation
disturbances for agent i in di

0, an observer-based approach is
employed to estimate di

0 while rejecting those disturbances di
ε.

Then, the first part of our control is given as follows:

ui
1 = − γ∇ f i(yi) + λi,

λ̇i = − λi
v − zi

v + di − yi − Di
ϵηi,

η̇i = (Si − LiDi)ηi + Lidi,
żi = λi

v, i = 1, …, N,

(8)

where

Si = diag 0,
0 ωi1

−ωi1 0 , …,
0 ωiki

−ωiki 0 ,

Di = [1, 1, 0, …, 1, 0
2ki

],

Di
ϵ = [1, 0, …, 1, 0

2ki

], λi
v ≜ ∑ j = 1

N ai j(λi − λj), zi
v ≜ ∑ j = 1

N ai j(zi − zj),

and γ ∈ ℝ, Li ∈ ℝ(2ki + 1) × 1 will be determined later. Here, the
parameter γ can be regarded as a proportional gain to correct the

regulation error, and the ηi-subsystem is a local observer to
estimate di(t) for disturbance rejection.

The following lemma guarantees the selection of gain matrix Li
such that Si − LiDi is Hurwitz and the effectiveness of our
algorithm in disturbance rejection.

 
Lemma 2: The pair (Si Di) is observable.
 
Proof: We consider the rank of [Si

⊤ − λI2ki + 1, Di
⊤]. When

λ ∉ {0, ω1, …, ωki}, this is obvious.
Suppose λ = 0, the matrix [Si

⊤, Di
⊤] can be partitioned as

follows:

0 02ki
⊤ 1

02ki S^i
⊤

Di
ε⊤,

where

S^i = diag
0 ωi1

−ωi1 0 , …,
0 ωiki

−ωiki 0 .

Since the rank of S^i is 2ki, rank[Si
⊤, Di

⊤] is then 2ki + 1.
Suppose λ = ωi j, without loss of generalities j = ki and partition

[Si
⊤ − ωiki, Di

⊤] in the following form:

−λ 02ki − 2
⊤ 02

⊤ 1

02ki − 2 S
~

i
⊤ − λI2ki − 2 [02ki − 2 02ki − 2] Di

ε~ ⊤

02
02ki − 2

⊤

02ki − 2
⊤

−ωiki −ωiki

ωiki −ωiki

1
0

.

where

S
~

i = diag
0 ωi1

−ωi1 0 , …,
0 ωiki − 1

−ωiki − 1 0 and Di
ε~

=

[1, 0, …, 1, 0
2ki − 2

] .

It can be checked that the rank of

−ωiki −ωiki 1
ωiki −ωiki 0

is 2 and the rest part has a rank 2ki − 1, thus
rank[Si

⊤ − ωiwki
I2ki + 1, Di

⊤] is then 2ki + 1.

To sum up, we obtain rank[Si
⊤ − λI2ki + 1, Di

⊤] = 2ki + 1 holds for
any λ. By Popov-Belevitch-Hautus-test [39], this implies the
conclusion. □

For the second part of our control, we recall Assumption 3 and
let ui

2 = ui(yi). The whole control ui to achieve our designed goal is
presented as follows:

ui = ui
1 + ui

2 = − γ∇ f i(yi) + λi + ui(yi),
λ̇i = − λi

v − zi
v + di − yi − Di

ϵηi,
η̇i = (Si − LiDi)ηi + Lidi,
żi = λi

v,

(9)

where the matrices Si, Di, Di
ϵ, Li are defined as above.

Under the information sharing constraints, the following lemma
shows that at the equilibrium point (x~i, λ

~
i, z~i) of the closed-loop

system composed of (5) and (9), the associated output y~i = hi(x~i)
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actually solves the resource allocation problem (6) with
disturbance rejection.

 
Lemma 3: Under Assumptions 1–3, the equilibrium point of the

closed-loop system composed of (5) and (9) satisfies the following
conditions for some constant λ0:

∇yi f i(y~i) + λ0 = 0, ∑
i = 1

N
y~i = ∑

i = 1

N
di

0, i = 1, …, N . (10)

 
Proof: The polluted observation di can be rewritten into a form

of di(t) = Ai0 + ∑ j = 1
ki Ai jsin(ωi jt + φi j), where Ai0 = di

0, Ai j and φi j

are unknown. Then, by taking a proper state variable ξi
d ∈ ℝ2ki + 1,

we can put it into ξ̇i
d = Siξi

d with di(t) = Diξi
d and an initial

condition ξi
d(0) determined by Ai j and φi j.

Letting di = ηi − di and recalling that η̇i = (Si − LiDi)ηi + Lidi,
we have

d˙ i = η̇i − ξ̇i
d = (Si − LiDi)di .

By the selection of Li, the matrix Si − LiDi is Hurwitz and the
trajectory of di(t) goes to 0 as time goes to infinity. Then the
equilibrium point of the closed-loop system composed of (5) and
(9) can be obtained by setting the derivatives of states to zero, i.e.
for i = 1, …, N

gi(x~i, u~i) = 0, − λ
~

i
v − z~i

v + di
0 − y~i = 0, λ

~
i
v = 0.

From λi
v = 0 and by Assumption 2, we have λ

~
1 = ⋯ = λ

~
N = λ

~

for some λ
~
. By summing up the second equation from 1 to N, it

follows ∑i = 1
N y~i = ∑i = 1

N di
0, where we use 1⊤L = 0. By Assumption

3, for given y~i and by the uniqueness of xi( ⋅ ), ui( ⋅ ), we have

−γ∇ f i(y~i) + λ
~

i + ui(y~i) = ui(y~i) and thus ∇ f i(y~i) − λ
~

γ = 0. Let

λ0 = λ
~

γ , the conclusion is thus complete. □
Since Assumption 1 implies that the optimisation problem (6)

has a unique solution, and thus y~i = yi
∗, xi(yi

∗) = xi(y~i),
ui(yi

∗) = ui(y~i) by Assumption 3. Let yi
∗, xi

∗, ui
∗ without confusions

represent y~i, xi(y~i) and ui(y~i) to save notations.
It is time to present our first main theorem.
 
Theorem 1: Under Assumptions 1–4, the distributed

coordination problem with regulation constraints determined by (5)
and (6) can be solved by the algorithm (9) with
γ > maxi ((1 + Mi)/hi) and Li such that Si − LiDi is Hurwitz, i.e.
limt → + ∞ yi(t) = yi

∗ for i = 1, …, N, where col(y1
∗, …, yN

∗ ) is the
optimal solution of (6). Moreover, if agent i is yi

∗-observable, the
closed-loop system is asymptotically stable at its equilibrium point.

 
Proof: By Lemma 3, we only have to show the stability and

output convergence of the closed-loop system w.r.t. its equilibrium
point.

Recalling the definition of passivity w.r.t. non-zero equilibrium,
the convergence part is trivial if a dynamic system is passive w.r.t.
its equilibrium point. We next show the passivity of this closed-
loop system with output y = col(y1, …, yN) and a new control
u^ ≜ col(u1 − λ1, …, uN − λN).

In fact, since Si = Si − LiDi is Hurwitz, there exists a positive
definite matrix Pi ∈ ℝ(2ki + 1) × (2ki + 1), such that Si

⊤Pi + PiSi = − I2ki + 1.
We then consider a candidate storage function V = ∑i = 1

N Vi(xi,
xi

∗) + Vlz + τ∑di
⊤Pidi, where Vlz ≜ (1/2)(λi − λ~i)⊤(λi − λ~i) +

(1/2)(zi − z~i)⊤(zi − z~i) and the constant τ > 0 will be selected later.
It can be verified that item (i) in (2.3) holds. To confirm item

(ii), we take the derivative of V along the trajectory of (5) and (9):

V̇ ≤ ∑
i = 1

N
(yi − yi

∗)⊤(ui − ui
∗) + ∑

i = 1

N
(λi − λ

~
i)⊤λ̇i

+ ∑
i = 1

N
(zi − z~i)⊤żi + 2τ∑

i = 1

N
di

⊤Pid
˙

i

= ∑
i = 1

N
(yi − yi

∗)⊤(u^i + λi − ui
∗) + ∑

i = 1

N
(λi − λ

~
i)⊤λ̇i

+ ∑
i = 1

N
(zi − z~i)⊤żi + 2τ∑

i = 1

N
di

⊤Pid
˙

i

≤ ∑
i = 1

N
(yi − yi

∗)⊤(u^i − u^i
∗) + ∑

i = 1

N
(yi − yi

∗)⊤(λi − λ
~

i) +

∑
i = 1

N
(λi − λ

~
i)⊤λ̇i + ∑

i = 1

N
(zi − z~i)⊤żi − τ∑

i = 1

N
di

⊤di

≤ (y − y∗)⊤(u^ − u^∗) − (λ − λ
~)⊤L(λ − λ

~)

− ∑
i = 1

N
(λi − λ

~
i)Di

ϵdi − τ∑
i = 1

N
di

⊤di,

where λ = col(λ1, …, λN),  λ
~ = col(λ~1, …, λ

~
N) and

u^i(yi) = − γ∇ f i(yi) + ui(yi) − ui(yi
∗).

From Assumption 2, (λ − λ
~)⊤L(λ − λ

~) ≥ c(λ − λ
~)⊤(λ − λ

~),
where c is the minimal positive eigenvalue of L. Using Young's
inequality to (λi − λ

~
i)Di

ϵdi gives

V̇ ≤ (y − y∗)⊤(u^ − u^∗) − c(λ − λ
~)⊤(λ − λ

~)

+ c
2(λ − λ

~)⊤(λ − λ
~) + 1

2c ∑
i = 1

N
| |Di

ϵ | |2 | |di | |2 − τ∑
i = 1

N
di

⊤di

≤ (y − y∗)⊤(u^ − u^∗) − c
2(λ − λ

~)⊤(λ − λ
~) − (τ − τ∗) | |d | |2 ,

where τ∗ = (1/2c) maxi | |Di
ϵ | |2. Letting τ ≥ 1 + τ∗ gives

V̇ ≤ − (y − y∗)⊤(u^ − u^∗) − c
2(λ − λ

~)⊤(λ − λ
~) − | |d | |2 ,

which implies the composite system is passive w.r.t. its
equilibrium.

Having the passivity of (5) with output y and input u^, we then
prove the convergence of y w.r.t. y∗. For this purpose, we only have
to guarantee the strict passivity of u^ w.r.t. y∗ by Lemma 1. In fact,
from the strong convexity of f i( ⋅ ) and the Lipschitzness of ui( ⋅ )
on the concerned set, we have

(yi − yi
∗)⊤[u^i(yi) − u^i(yi

∗)] ≤ ( − γhi + Mi) | | yi − yi
∗ | |2 . (11)

Taking γ > maxi ((1 + Mi)/hi) gives (yi − yi
∗)⊤[u^i(yi)

−u^i(yi
∗)] ≤ − | | yi − yi

∗ | |2, which implies the strict passivity of ui( ⋅ )
w.r.t. y∗. By Lemma 1, it follows limt → + ∞ yi = yi

∗ for i = 1, …, N.
To prove the asymptotic stability, we can check that

(x∗, λ
~, z∗, 0) is the only trajectory contained in the set

(x, λ, z, d) ∣ V̇ = 0  by the yi
∗-observability of agent i. According

to LaSalle's invariance principle [30], one can obtain the
conclusions. □

Notably, the presented passivity-based approach provides a new
control perspective for the existing distributed optimisation
problems. Unlike the problems considered in [23, 34], we aim to
achieve a distributed output optimisation while the optimisation
part happens on the input side in their formulations. Since passivity
has been widely used in many non-linear control publications [30,
31, 33], this method allows us to consider this problem for more
general physical agents other than single integrators [17, 21, 22].

 
Remark 2: In conventional resource allocation, the plants are

actually single integrators (e.g. [21, 22], which are our special
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cases of passivity w.r.t. (y∗, x∗, 0). Thus, this conclusion is a non-
linear extension of the existing results to a larger class of dynamic
systems. Furthermore, as a primal-dual based method to solve the
distributed optimisation problem, this algorithm is different from
those in [21, 41] which need non-trivial initialisations, and this
initialisation-free property makes it more applicable to networked
systems with variable numbers of agents.

When the plants are of exponential passivity, one can further
obtain the exponential convergence of this algorithm as follows.

 
Theorem 2: Under the hypothesis of Theorem 1, further assume

agent i is exponentially passive w.r.t. (yi
∗, xi

∗, ui
∗) for 1 ≤ i ≤ N.

Then, the distributed coordination problem with regulation
constraints determined by (5) and (6) can be exponentially solved
by the algorithm (9) with a properly chosen γ.

 
Proof: To prove this theorem, we first let xi = xi − xi

∗yi = yi −
yi

∗, λi = λi − λ
~

i, zi = zi − zi
∗, it follows

λ˙ i = − ∑
j = 1

N
ai j(λi − λ j) − ∑

j = 1

N
ai j(zi − z j) + di

0 − yi − Di
ϵdi,

d˙ i = (Si − LiDi)di,

żi = ∑
i = j

N
ai j(zi − z j) .

The whole dynamic can be written in a compact form

λ˙ = − Lλ − Lz − y − Dϵd,
d˙ = Sd,
ż = Lλ,

where λ = col(λ1, …, λN), z = col(z1, …, zN), y = col(y1,
…, yN), d = col(d1, …, dN), S = diag{S1 − L1D1, …, SN − LNDN}
and Dϵ = diag{D1

ϵ, …, DN
ϵ }.

Letting ẑ1 = r⊤z, ẑ2 = R⊤z gives

λ˙ = − Lλ − LRẑ2 − y − Dϵd,
ż̂2 = R⊤Lλ,
d˙ = Sd,

(12)

where we use r⊤ż = 0 and ẑ1 ≡ 0. Then our problem is reduced to
prove the exponential stability of the composite system determined
by the evolution of x, λ, d, ẑ2 under (5), (9), and (12).

The proof will be accomplished by two steps.
First, we prove the exponential stability of (12) when y ≡ 0.

Noticing that the system is in a cascaded form, we only have to
prove the stability of the (λ, ẑ2)-subsystem when y ≡ 0 and d ≡ 0,
since S is already Hurwitz by the selection of Li.

Since system (12) is linear, we only have to obtain the
asymptotic stability of (λ, ẑ2)-subsystem. For this purpose, we
consider Vlz = 1

2 λ⊤λ + (1/2)z2
⊤z2 as a Lyapunov candidate, and then

its derivative along the trajectory of (12) when y ≡ 0 and d ≡ 0
satisfy the following:

V̇ lz ≤ − λ⊤Lλ ≤ − cλ⊤λ,

where c is the minimal positive eigenvalue of L. This consequently
implies λ → 0 as t goes to infinity. Denote

A ≜
−L LR

R⊤L 0
.

Under Assumption 2, LR has a full column-rank, then the pair
[I 0], A  is observable by the PBH-test. Combining the above

arguments, we can conclude the asymptotic stability of (λ, ẑ2)-
subsystem when y ≡ 0 and d ≡ 0 and thus the exponential stability
of (12) when y ≡ 0.

Next, we prove the exponential stability of the composite
system. Since (12) is exponentially stable when y ≡ 0, there exists
a unique positive definite matrix P satisfying A^ ⊤

P + PA^ = − I for
A^ ≜ diag{A, S}. Take a Lyapunov candidate for the composite
system as V = ∑i = 1

N Vi(xi, xi
∗) + λ

^⊤
Pλ

^
 with λ

^ = col(λ, ẑ2, d), which
is apparently positive definite due the exponential passivity of (5)
by assumptions. Its derivative along the trajectory of this
composite system composed of (5) and (9) satisfies

V˙ ≤ − ∑
i = 1

N
ci1Vi − ∑

i = 1

N
yi

⊤[u^i(yi) − u^i(yi
∗)] + y⊤λ

−λ
^⊤

λ
^ + 2λ

^⊤
PA^ B^ y,

where B = col(IN, 0, 0). Using Young's inequality and
| |λ | |2 ≤ | |λ^ | |2, one can obtain

V˙ ≤ − ∑
i = 1

N
ci1Vi − ∑

i = 1

N
yi

⊤[u^i(yi) − u^i(yi
∗)] + | | y | |2

+ 1
4 | |λ | |2 − λ

^⊤
λ
^ + 1

4 | |λ^ | |2 + 4| |PAB | |2 | | y | |2

= − ∑
i = 1

N
ci1Vi − 1

2λ
^⊤

λ
^ + (1 + 4| |PAB | |2 ) | | y | |2

+ ∑
i = 1

N
yi

⊤[u^i(yi) − u^i(yi
∗)] .

Taking

γ > max
i

2 + 4 | |PAB | |2 + Mi
hi

gives

V˙ ≤ − ∑
i = 1

N
ci1Vi − 1

2 | |λ^ | |2 − | | y | |2 .

Applying Theorem 4.10 in [30] gives the exponential convergence
of V  under this algorithm and thus y exponentially converges to the
optimal solution of (6). The proof is complete. □

 
Remark 3: In contrast to the existing constrained steady-state

regulation problem [24], we consider its distributed extensions
where the steady-state of agents can only be determined and
reached in a distributed way, which is of course more challenging.
Moreover, unknown observation disturbances are taken into
consideration, along with both the asymptotic and exponential
convergence results, while only local and asymptotic results were
obtained in [10, 24].

5 Applications and discussions
In this section, we provide the applications of previous designs and
examples to verify the effectiveness.

5.1 Distributed inventory control

In this subsection, we show how a distributed inventory control
problem can be formulated as a resource allocation problem over
dynamic agents and solved by our approach. We consider only one
perishable commodity and N networked inventories [25].

The inventory system at node i is modelled as

İ i = − θiIi + Pi − Di, (13)
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where Ii is the inventory level, θi > 0 is the deterioration rate, Pi is
the production rate at node i, and Di is a constant demand rate. The
information structure among these inventories is represented by a
connected graph G. The storage cost at each warehouse is given as
f i(Ii) = αiIi

2 + βiIi + γi, where αi > 0.
Generally speaking, we aim to maintain the total inventory at a

certain level Ir to satisfy the customer's demands and some safety
goals. Thus, this inventory control problem can be formulated as
follows. Given inventory systems and cost functions
f 1( ⋅ ), …, f N( ⋅ ), find a production rate for each inventory in a
distributed way, such that the inventory level I converges to the
optimal solution I∗ ≜ col(I1

∗, …, IN
∗ ) that solves

minimize ∑
i = 1

N
f i(Ii)

subject to ∑
i = 1

N
Ii = Ir .

(14)

Clearly, the ith inventory system is exponentially passive w.r.t.
(Ii

∗, ui(Ii
∗)) with input y = Ii, input Pi and ui(Ii

∗) = θiIi
∗ + Di, and

hence Assumptions 1–4 are also satisfied. With a pre-allocation of
inventory level Ir = ∑i = 1

N Ii
r, the following corollary shows the

effectiveness of our previous design on distributed inventory
control.

 
Corollary 1: Given the communication graph G and cost

functions f 1( ⋅ ), …, f N( ⋅ ), the distributed inventory control
problem determined by (13) and (14) can be solved by the
following algorithm

Pi = − ∇ f i(Ii) + λi + ui(Ii),
λ̇i = − λi

v − zi
v + Ii

r − Ii,
żi = λi

v, i = 1, …, N,
(15)

where γ can be any positive constant. Moreover, I(t) converges to
I∗ exponentially as t → ∞.

We then provide a numerical example with four inventories
having parameters αi = 0.1i, βi = − 0.05i, γi = θi = Di = Ii

r = i,
i = 1, …, 4. The communication graph is taken as Fig. 1 and all
initial conditions are randomly chosen in [0, 6]. By choosing
control inputs as (15), we solve this inventory control problem and
drive the outputs to the optimal solution
I∗ = col(4.57, 2.41, 1.69, 1.33). For comparisons, we take the
input Pi as that in [22], and the output trajectories of inventories are
represented by dash lines. It can be found in Fig. 2 that the

algorithm fails to solve our problem and only drives the outputs of
agents to a non-optimal point col(5.53, 2.37, 1.32, 0.79), which
confirms the effectiveness of our design. 

5.2 Average consensus with disturbance rejection

A consensus and especially an average consensus of multi-agent
agents have been shown as an inevitable part of the solution for
more complex problems in several applications, including
distributed filtering and multi-robot flocking [1, 2]. While a
consensus only requires the agreement on some common signals,
an extra condition has to be satisfied in an average consensus,
which relates the limiting behaviour of the whole system to the
initial states. The average consensus problem is certainly more
challenging especially when we expect an average consensus of all
outputs for a heterogeneous multi-agent network.

In our formulation, let f i(s) = (1/2)s2 and one can obtain the
following conclusion.

 
Corollary 2: Under Assumptions 2–4, the outputs of agents (5)

can reach the average of their private data di
0 under the following

algorithm

ui = − γyi + λi + ui(yi),
λ̇i = − λi

v − zi
v + di − yi − Di

ϵηi,
η̇i = (Si − LiDi)ηi + Lidi,
żi = λi

v, i = 1, …, N,

(16)

where γ > 1 + maxi Mi and Li is selected as in Theorem 1, i.e.
limt → + ∞ yi(t) = 1

N ∑i = 1
N di

0 for i = 1, …, N.
The proof is a direct application of Theorem 1. As a by-product

of this corollary, we can solve the output average consensus
problem of these agents in spite of observation disturbances di

ϵ by
letting di

0 = yi(0). Then, yi(t) → Aver(y(0)) ≜ (1/N)∑i = 1
N yi(0) as t

goes to infinity. Since a single integrator is passive, this result
extends the average consensus results to a larger class of non-linear
systems with disturbance rejection.

To verify the effectiveness of this algorithm, we consider four
controlled Chua's circuits [42] as follows:

ẋi1 = αi(xi2 − xi1 − f i(xi1) + Fi),
ẋi2 = xi1 − xi2 + xi3,
ẋi3 = − βixi2,
yi = xi1,

where Fi is the input signal and
f i(xi1) = bixi1 + (1/2)(ai − bi)( | xi1 + ci | − | xi1 − ci | ) with typical
parameters αi = 9, βi = 100/7, ai = − (8/7), bi = − (5/7), ci = 1.
The agents are coupled by a communication graph as shown in Fig.
1. We aim to achieve an output average consensus by output
feedback control.

First, we let Fi = ui + f i(xi1) to passivate agent i's dynamics with
output yi and a new input ui. In fact, Assumptions 3 and 4 hold with
xi1(r) = r,  xi2(r) = 0,  xi3(r) = − r, ui(r) = r, and
Vi(x, xi

∗) = (1/αi)(xi1 − xi1
∗ )2 + (xi2 − xi2

∗ )2 + (1/βi)(xi3 − xi3
∗ ). Thus the

average output consensus problem among these agents can be
solved by (16).

For simulations, we assume agent i is subject to a sinusoidal
observation disturbance with frequency ωi = 4 − i and unknown
amplitude or phase after t = 30 s. The controller is taken as (9)
with Di

ϵ = [0, 0] during 0 s ∼ 45 s and with Di
ϵ = [1, 0] after 45 s.

All initial conditions are randomly chosen in [ − 5, 5]. At first, the
outputs of agents quickly converge to their average point. Then, the
average consensus is disrupted by those observation disturbances.
After the disturbance rejection part works at t = 45 s, we recover
the output average consensus of these agents. The detailed
performance of the above control is depicted in Fig. 3. 

Fig. 1  Communication graph G
 

Fig. 2  Profiles of the inventory levels under the control (15)
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5.3 Non-minimum phase multi-agent coordination

Note that many non-minimum phase non-linear systems have an
incremental passivity property (perhaps after a passivation
procedure) [30]. It is appealing to employ the proposed algorithms
to handle non-minimum phase non-linear agents with more
complicated objective functions. We present an example in this
subsection to verify this point.

Consider a network of four non-linear agents described by

żi1 = εi1zi2
3 ,

żi2 = − εi2zi1 + εi3xi,
ẋi = − εi4zi2

3 − εi5xi + ui,
yi = xi,

where εi1, …, εi5 are positive constants (i = 1, …, 4).
Apparently, the zero dynamics of agent i is

żi1 = εi1zi2
3 , żi2 = − εi2zi1, which is not asymptotically stable. Thus,

the agents are all in the non-minimum phase. Nevertheless, it can
be verified that Assumptions 3 and 4 hold with
zi1(r) = (ε3/ε2)r, zi2(r) = 0, xi(r) = r, ui(r) = εi5r and storage
functions

Vi = 1
2 zi1

2 + εi1
4εi3

zi2
4 + εi1εi3

2εi2εi4
xi

2 .

Take εi j = 1 and an information sharing graph as in Fig. 1. We
consider the distributed coordination problem among these agents
with regulation constraints. The local cost functions satisfying
Assumption 1 are chosen as f 1(y1) = (y1 + 3)2, f 2(y2) = y2

2ln(1 +
y2

2) + (y2 + 1)2, f 3(y3) = ln(e−0.1y3 + e0.3y3) + y3
2 and f 4(y4) = y4

2/
(25 y4

2 + 1) + (y4 − 3)2. Assume the constant di
0 = i and agent i is

subject to a sinusoidal disturbance with frequency ωi = 4 − i but

unknown amplitude or phase after t = 75 s. The problem is
solvable by Theorem 1.

Choose L1 = col(5.00, 6.72, 2.19),  L2 = col(5.00, 6.51, 2.75),
L3 = col(5.00, 6.07, 3.69),  L4 = col(5.00, 5.00, 5.00) and γ = 2. To
verify the disturbance rejection performance, we let Di

ϵ = [0, 0]
during 0 s ∼ 95 s and Di

ϵ = [1, 0] after 95 s. The evolution of yi
under (9) is depicted in Fig. 4. 

At first, all outputs of agents evolve without disturbances and
quickly converge the optimal point. Then, the agents are moved
away from the optimal steady-state due to the observation
disturbances. After the disturbance rejection part works at t = 95 s,
we recover the optimal steady-state regulation of these agents,
which confirms the conclusions.

6 Conclusions
A distributed coordination problem with regulation constraints was
formulated and solved for a class of non-linear passive multi-agent
systems. By reviewing the passivity technique w.r.t. non-zero
equilibrium, we reduce the concerned optimisation to a passivity-
based regulation problem. Combined with graph theory and
observer design technique, gradient-based rules are proposed to
solve our problem with disturbance rejection. Potential applications
and numerical examples are presented to show their effectiveness.
In fact, many interesting and challenging problems still remain to
be addressed, including how to solve this problem under switching
graphs and extend the gradient-based rules to general monotone-
operator-based designs.
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