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OUTPUT AVERAGE CONSENSUS OVER HETEROGENEOUS
MULTI-AGENT SYSTEMS VIA TWO-LEVEL APPROACH

Yutao Tang

In this paper, a novel two-level framework was proposed and applied to solve the output
average consensus problem over heterogeneous multi-agent systems. This approach is mainly
based on the recent technique of system abstraction. For given multi-agent systems, we first
constructed their abstractions as the upper level and solved their average consensus problem
by leveraging well-known results for single integrators. Then the control protocols for physical
agents in the lower level were synthesized in a hierarchical way by embedding the designed law
for abstractions into an interface between two levels. In this way, the complexity coming from
heterogeneous dynamics of agents is totally decoupled from that of the coordination task and
the communication topologies. An example was given to show its effectiveness.
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1. INTRODUCTION

As a fundamental problem of multi-agent systems, consensus has been widely inves-
tigated due to its numerous applications such as cooperative control of unmanned
aerial vehicles, communication among sensor networks, and formation of mobile robots
[12, 13, 16, 22, 17].

While consensus only requires the agreement on some common signal, average con-
sensus (i. e., consensus on the average of some individual signals) of multi-agent agents
has been shown as an inevitable part of the solution for more complex problems in sev-
eral applications, including distributed filtering [2] and multi-robot flocking [20]. Note
that an extra condition has to be satisfied in average consensus, relating the limiting
behavior of the whole system to the initial states, this problem is certainly more chal-
lenging especially when we expect average consensus of all outputs in a heterogeneous
multi-agent network.

The main difficulty hurdling the output average consensus analysis over general multi-
agent systems lies in the complexities due to the couplings between high-order hetero-
geneous dynamic and average task. In fact, existing results are relatively few, and most
publications emphasize on only simple agents (e. g. single or double integrators) under
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a fixed graph. For example, a local averaging protocol for single integrators was em-
ployed in [12] from a control viewpoint to solve this problem under a strongly connected
and balanced topology. Fast linear iterations were also proposed in [23] to solve the
distributed averaging problem in a discrete-time version. A dynamic average consensus
rule was proposed in [8] such that each agent can track the average of their dynamic
inputs with some steady-state error. A similar design was also provided for integrator-
type agents under general graphs in [1]. However, to our knowledge, there is no general
output average consensus conclusion over high-order multi-agent systems even under
fixed undirected graphs except [14]. The authors in [14] assumed that each agent shares
its initial position and proposed an integral control rule to drive several identical high-
order integrators to achieve an output average consensus. Nevertheless, the solvability
of output average consensus over general (heterogeneous) linear multi-agent systems is
still unclear.

Based on aforementioned observations, an intuitive idea to achieve average consensus
over general multi-agent systems is to decouple those complexities brought by high-order
dynamics and the average consensus task. If so, we can separately solve two simpler
subproblems instead of the original difficult one. The aim of this paper is to show that
the abstraction technique is possibly the right tool to achieve this goal.

Abstraction, frequently used in computer science [5] , has been shown as an effec-
tive approach to reduce the dynamic complexities of control systems. The authors in
[3] proved that a given linear system, satisfying some linear matrix inequalities, can be
abstracted into its Π-related system with a lower dimension while keeping the difference
between their output trajectories within a computable bound. A hierarchical distributed
control approach was later proposed for coordination of general linear multi-agent sys-
tems in [18]. Based on a simpler abstraction and proper interfaces under system-inclusion
assumptions, the coordination protocol was synthesized by some embedding techniques
according to difference tasks.

By formulating a two-level control framework via abstraction, we aim to solve the
output average consensus problem over general linear multi-agent systems. The contri-
bution of the work is at least twofold. Firstly, comparing with the output consensus or
synchronization results in [10, 13, 15], we emphasized on the more challenging output
average consensus problem. By this novel hierarchical control approach, output aver-
age consensus was achieved for a group of general linear agents under mild connectivity
conditions, while most existing average consensus analysis and designs were only for
special types of dynamics, e. g. single integrators [12]. Secondly, comparing with the
abstraction and hierarchical design for a single system in [3], we provided a more precise
characterization for linear abstraction problem and extended it to a distributed version
for networked systems. Furthermore, those agents considered here are heterogeneous,
while only the homogeneous case was considered in [18].

The rest of this paper is organized as follows. Problem statement is presented in
Section 2. After introducing some basic results of system abstraction in Section 3, we
provide a two-level control scheme with main results in Section 4. Finally, simulation
examples and concluding remarks are presented at the end.
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Notations. Let
Rn be the n-dimensional Euclidean space;
Rn×m be the set of n×m real matrices;
diag{b1, . . ., bn} denotes an n×n diagonal matrix with diagonal elements bi (i = 1, . . ., n);
col(a1, . . ., an) = [aT

1 , . . ., a
T
n ]T for any column vectors ai (i = 1, . . ., n);

Ave(y) ,
Pn
i=1 yi
n , for any vector y ∈ Rn.

A continuous function α : [0, a)→ [0, ∞) belongs to class K if it is strictly increasing and
α(0) = 0; it belongs to class K∞ if it belongs to class K with a =∞ and lim

s→∞
α(s)→∞.

2. PROBLEM STATEMENT

Consider a group of (non-identical) linear agents of the form:

ẋi = Aixi + biui

yi = cixi, i = 1, . . ., N
(1)

where xi ∈ Rnxi , ui ∈ Rnio , yi ∈ Rnio are its state, input and output, respectively.
Ai, bi, ci are matrices with proper dimensions. We assume the pair (ci, Ai, bi) is minimal
and has no transmission zero at the origin of complex plane. Apparently, it includes
minimum-phase linear systems and of course high-order integrators as its special cases.
For simplicity, we take nio = 1. The following arguments can be extended to multiple-
input and multiple-output cases without difficulties.

Associated with these multi-agent systems, a digraph G = {V, E , A} is defined with
node set N = {1, ..., N} to describe the communication topology (see [11] for details). If
agent i can get access to the information of agent j, there exists a directed edge in G with
weight aij . Define the neighbor set of agent i as N 0

i = {j : (j, i) ∈ E} for i = 1, ..., N
and Ni = N 0

i ∪ {i}. To achieve a coordination of those agents, this graph should be
connected to some degree. The following assumption has been widely in multi-agent
systems [12, 13].

Assumption 1. The graph G is undirected and connected.

Invoking the topology of these multi-agent systems, we consider distributed control
laws of the following form.

ui = φi(ξj , xj , j ∈ Ni)
ξ̇i = ψi(ξj , xj , j ∈ Ni)

(2)

where ξi ∈ Rnξi with a nonnegative integer nξi and smooth functions φi,ψi to be de-
signed later. When nξi = 0, the control law for agent i is a static one. It becomes an
output feedback control when only yj (not xj) (j ∈ Ni) is used.

Next, we formulate the output average consensus problem over these multi-agent
systems as follows. Given multi-agent systems composed of (1) and a communication
graph G, find a distributed control law ui of the form (16), such that

lim
t→∞

ei(t) = 0, i = 1, . . ., N, (3)

where ei , yi −Ave(y(0)).
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Remark 2.1. Instead of merely reaching a consensus, an extra condition, yi(∞) =
Ave(y(0)), has to be satisfied which relates the limiting behavior of those multi-agent
systems to their initial states. In contrast to many publications on output consensus
among several classes of multi-agent systems (e. g. [4, 10]), few results are obtained on
average consensus for agents. Moveover, existing average consensus results are only
derived for some special multi-agent systems, e. g. integrators [12], while heterogeneous
multi-agent systems with general linear dynamics are considered here, which makes this
problem much more challenging.

In the following sections, we first give a brief introduction to abstraction techniques,
then present a novel hierarchical control approach for our multi-agent system to solve
its output average consensus problem.

3. ABSTRACTION AND SIMULATION FUNCTION

In this section, preliminary knowledge on abstraction is given for the following analysis.
For the sake of consistency, we emphasize on a single-input and single-output linear
system S as follows.

ẋ = Ax+ bu

y = cx
(4)

where x ∈ Rn, u ∈ R, y(t) ∈ R. Suppose (c, A, b) is minimal. In the following, we refer
to (4) as the concrete system to be controlled in practice.

We adopt the simulation-based abstraction formulation [3] for our design and suppose
the abstraction S′ of (4) is also linear of the form:

ż = Fz + gv

w = hz
(5)

where z ∈ Rm, v ∈ R, w ∈ R. Typically, the dimension of system (5) is much smaller
than that of the concrete system, i. e., m� n.

Throughout the paper S and S′ are supposed to be forward complete, namely, for
every initial condition and every measurable locally essentially bounded input signal, the
solution is defined for all t ≥ 0, i. e., the maximal interval of existence is Tmax = +∞.
Inspired by [3] and [18], we introduce simulation functions as follows to quantify the
approximation relationship between concrete system and its abstraction.

Definition 3.1. Let V : Rm × Rn → R+ be a smooth function with V (0, 0) = 0 and
uv : R× Rm × Rn → R be a continuous function. V is a simulation function of S′ by S
and uv is an associated interface if there exist two class K functions γ and α such that,
for all (z, x) ∈ Rm × Rn,

V (z, x) ≥ (y − z)2 (6)

and for all v ∈ R satisfying γ(||v||) < V (z, x),

∂V

∂z
(Fz +Gv) +

∂V

∂x
(Ax+ buv) < −α(V ). (7)
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In Inequality (7), we impose a strict decreasing rate than that in [3], which benefits us
with more precise characterization of the simulation relationship between those outputs
of S′ and S.

Lemma 3.2. Let V be a simulation function of S′ by S with an associated interface
uv, v(t) be an admissible input of S′, x, z and w satisfying

ẋ = Ax+ buv(z, x, v),
ż = Fz + gv,

y = cx, w = hz.

(8)

Then, there exists a class KL function β(·, ·) holding for t ≥ 0

(y − w)2 ≤ β(V (x(0), z(0)), t) + γ(||v||∞). (9)

Additionally, if v(t) vanishes when t goes to infinity, then,

|w(t)− y(t)| → 0 (t→ +∞). (10)

P r o o f . The proof will follow the traditional technique of comparison functions and is
split into two steps.
Step 1 : Consider a set M , {(z, x) : V (z, x) ≤ c0}, where c0 , γ(||v||∞). We claim
that, if there exists a t0 such that (z(t0), x(t0)) ∈ M , then (z(t), x(t)) ∈ M for t > t0.
We prove it by seeking a contradiction.

Assume there exist some t > t0, ε and V (z(t), x(t)) > c0 + ε. Let τ = inf(t > t0 :
V (z(t), x(t)) > c0 + ε), then V (z(τ), x(τ)) ≥ c0 + ε, which implies V (z(τ), x(τ)) ≥ c.
Combining with the definition of V , it gives

∂V

∂t
|t=τ< −α(V (z, x) |t=τ ) < 0 (11)

Thus, V (z(t), x(t)) > V (z(τ), x(τ)) for some t during (t0, τ), which contradicts to the
minimality of τ . Hence the following argument holds as we claimed:

V (z(t), x(t)) < γ(||v||∞), for all t > t0. (12)

Step 2 : Let t1 = inf{t > 0 : (z(t), x(t)) ∈ M}. It follows from the above argument
V (z(t), x(t)) ∈ M for t > t1, i. e., V (z(t), x(t)) ≤ γ(||v||). For any t < t1, (z(t), x(t)) /∈
M , that is, V (z(t), x(t)) > c = γ(||v||∞). By the definition of simulation function, we
have, for 0 ≤ t < t1,

∂V

∂t
< −α(V (z(t), x(t))).

By a stand comparison principle [9], there exists some class KL function β such that

V (z(t), x(t)) < β(V (z(0), x(0)), t), for all t < t1.
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Combining these inequalities, one can safely conclude

(w(t)− y(t))2 < β(V (z(0), x(0)), t) + γ(||v||∞)

which is exactly the inequality (9).
Suppose v(t) vanishes as t goes to infinity, then for any given ε > 0, there exists

a large enough T satisfying |v(t)| ≤ γ−1( ε2 ) for t > T . We can apply the previous
arguments to the composite system from a new initial time t0 = T , and thus obtain,

(w(t)− y(t))2 < β(V (z(T ), x(T )), t) +
ε

2

Note that the function β(·, ·) ∈ KL, there exists a T1 > 0 such that

β(V (z(T ), x(T )), t) <
ε

2
, ∀t > T1

Taking T0 = max{T, T1}, one can thus obtain that, for any t > T0 > 0,

(w(t)− y(t))2 < ε

That is w(t)− y(t)→ 0 as t→ +∞. We thus complete the proof. �

A similar estimation was established in [3]:

|y(t)− w(t)| ≤ max{V (x(0), z(0)), γ(||v||∞)}.

Under Definition 3.1, it allows the concrete system to asymptotically simulate its ab-
straction for some special design of v, which is more proper for consensus coordination
over complex multi-agent systems.

4. A TWO-LEVEL DESIGN

In this section, we will provide a two-level framework to solve the output average con-
sensus problem over heterogeneous multi-agent systems. The hierarchical structure and
information flow of our abstraction-based distributed control approach is depicted in
Fig. 1. Details will be specified in the following subsections.

4.1. Abstraction Level: Protocol Design

First, a network of abstractions should be set up as the upper level according to given
tasks. The following lemma for linear systems plays a key role in our design.

Lemma 4.1. If the triple (c, A, b) is minimal with no zero at the origin, the system
(4) takes an integrator ż = v, w = z as its abstraction with an interface of the form
u = k(x − Xz) + Uz + Rv, where X, U satisfy AX + bU = 0, cX = 1, k is a matrix
such that A+ bk is Hurwitz and R is freely selected.



288 YUTAO TANG

Fig. 1. Two-level structure of abstraction-based hierarchical control.

P r o o f . To prove this lemma, we only have to find a simulation function and its
associated interface. Since the plant has no zero at the origin, by the transmission zero
condition in [7], there exists a pair (X, U) satisfying AX + bU = 0, cX = 1. Taking a
matrix k such that A+ bk is Hurwitz and letting x̄ = x−Xz give

˙̄x = Ax+ bu−Xv, y − w = cx̄

Next, we take a linear control law uv = kx+ Uz +Rv,

˙̄x = (A+ bk)x̄+ (bR−X)v.

One can easily verify the conditions in Definition 3.1.
In fact, since A+bk is Hurwitz, there exists a positive definite matrix P ∈ Rn×n such

that (A+ bk)TP +P (A+ bk) = −In. Take V = ĉx̄TPx̄, where ĉ ≥ ||c||2
λmin(P ) . Apparently,

V ≥ ||c(x−Xz)||2 = (y − z)2.

V̇ = 2ĉx̄T[(A+ bk)x̄+ (bR−X)v]

≤ −ĉx̄Tx̄+ 2ĉx̄TP (bR−X)v

≤ − V

2λmax(P )
− (

V

4λmax
− 4c||P (bR−X)||2v2)

Let α(s) = 1
2λmax(P )s and

γ(s) = 16λmax(P )||P (bR−X)||2s2,

the inequality (7) holds. Thus V and uv are indeed the simulation function and associ-
ated interface between (c, A, b) and the integrator under Definition 3.1. �

By Lemma 4.1, we select the abstraction of agent i to achieve average consensus in
the upper level as follows:

żi = vi, wi = zi (13)
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Then, proper protocols to achieve average consensus in the upper level for those abstrac-
tions should be proposed, which have been well-studied in literature (e. g. [12]).

A neighbor-based protocol is used here for average consensus of abstractions:

vi =
N∑
j=1

aij(zj − zi). (14)

Remark 4.2. Although we only consider output average consensus for agents of the
form (1), it is remarkable that output weighted consensus problem on y∗w ,

PN
i=1 wiyi(0)PN
i=1 wi

with wi > 0 can also be solved when weighted consensus is achieved in the upper level.
In fact, letting vi = 1

wi

∑N
j=1 aij(zj − zi) and recalling Corollary 3 in [12], we can solve

it easily by following the same procedure.

4.2. Agent level: Interface embedding

After designing controllers for the abstraction level, we synthesis the control protocol
for (1) to solve our original multi-agent systems.

Note that, the abstraction is locally set up as a virtual reference, it is reasonable to
choose its initial conditions and use its state and input in our control as well. Thus the
distributed coordination is transformed into N decentralized interface constructing and
reference embedding problems.

Combined with Lemma 4.1, a state-feedback interface candidate would be ui = ki(xi−
Xizi)+Uizi+Rivi. by embedding (14) into this interface, a control candidate to achieve
output average consensus of our multi-agent systems is

ui = ki(xi −Xizi) + Uizi +Ri

N∑
j=1

aij(zj − zi),

żi =
N∑
j=1

aij(zj − zi), zi(0) = yi(0).

(15)

When only output information yi is available, it is possible to provide a dynamic
output-feedback interface as follows

ui = ki(ξi −Xizi) + Uizi +Ri

N∑
j=1

aij(zj − zi),

ξ̇i = Aiξi + biui − li(yi − ciξi),

żi =
N∑
j=1

aij(zj − zi), zi(0) = yi(0) (16)

where li is a chosen matrix such that Ai + lici is Hurwitz.
It is interesting to remark that an initialization zi(0) = yi(0) is employed in our design,

which can be taken as an information-sharing mechanism to achieve a cooperative task.
Similar ideas have been used in many publications for integrators, e. g. [8] and [14].
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4.3. Performance Evaluation and Convergence

In this subsection, we shall prove the solvability of output average consensus problem
over these heterogeneous multi-agent systems under proposed controls (15) and (16).

It is time to give our first main theorem.

Theorem 4.3. Under Assumption 1, the output average consensus of multi-agent sys-
tems (1) can be achieved by a state-feedback control law of the form (15).

P r o o f . To prove this theorem, we rewrite the composite system as follows.

ẋi = Aixi + bi[ki(xi −Xizi) + Uizi +Rivi]

żi =
N∑
j=1

aij(zj − zi), zi(0) = yi(0)

where vi =
∑N
j=1 aij(zj−zi). It is of the cascaded form while xi-subsystem is the driven

one. Letting z = col(z1, · · · , zN ) gives

ż = −Lz, z(0) = y(0).

By Theorem 5 in [12], it solves the average consensus of z, that is, lim
t→∞

zi(t) = Ave(z(0)) =

Ave(y(0)).
Apparently, it happens that lim

t→∞
vi = 0. By Lemma 4.1, we have

|ei(t)| ≤ |yi(t)− wi(t)|+ |zi(t)−Ave(y(0))| → 0

as t→ +∞ and thus complete the proof. �

This result can be extended to a class of digraphs as follows.

Corollary 4.4. For given multi-agent systems composed of (1) with a fixed digraph
topology G. The output average consensus problem is solvable if and only if G is strongly
connected and balanced.

The p r o o f is not hard, since the average consensus in the upper level under (14) is
solved if and only if G is strongly connected and balanced by Theorems 3 and 5 in [12].

There might be some cases when only yi is available through measurement. We then
present the second main theorem for these multi-agent systems under output feedback
law (16).

Theorem 4.5. Under Assumption 1, the output average consensus of multi-agent sys-
tems composed of (1) can be solved by a dynamic output-feedback control law of the
form (16).
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P r o o f . As that in Theorem 4.3, the composite system under (16) is as follows.

ẋi = Aixi + bi[ki(xi −Xizi) + Uizi +Rivi] + biki(ξi − xi)
ξ̇i = Aiξi + biui − li(yi − ciξi),

żi =
N∑
j=1

aij(zj − zi), zi(0) = yi(0).

Letting z = col(z1, · · · , zN ), ξ̄i = ξi − xi and x̄i = xi −Xizi gives

˙̄xi = (Ai + biki)x̄i + (biRi −Xi)vi + bikiξ̄i

˙̄ξi = (Ai + lici)ξ̄i,
ż = −Lz, z(0) = y(0).

Since Ai + biki and Ai + lici are both Hurwitz by selections and lim
t→∞

vi = 0, we thus

obtain |yi(t) − zi(t)| = |cix̄i| → 0 as t goes to infinity by Theorem 9.1 in [9]. Recalling
lim
t→∞

zi(t) = Ave(z(0)) = Ave(y(0)) in Theorem 4.3, we thus complete the proof. �

For agents of special dynamics, static output feedback interfaces might be con-
structed, which brings reduced-order output feedback controls to achieve output average
consensus of those heterogeneous multi-agent systems.

Theorem 4.6. Consider the multi-agent systems composed of (1) with a fixed topology
satisfying Assumption 1. Suppose for any i, there exists a constant νi 6= 0 satisfying

bTi Pi = νici (17)

where Pi is positive definite and satisfies the following linear matrix inequality

AT
i Pi + PiAi < 2PibibTi Pi. (18)

Then, a reduced-order output feedback of the form

ui = ki(yi − zi) + Uizi +Ri

N∑
j=1

aij(zj − zi),

żi =
N∑
j=1

aij(zj − zi), zi(0) = yi(0)

(19)

can be employed to solve the average consensus problem for these multi-agent systems.

P r o o f . Following the procedure of our hierarchical control approach, we have yi−zi =
ci(xi −Xizi). The composite system is then as follows.

ẋi = Aixi + bi[kici(xi −Xizi) + Uizi +Rivi]

żi =
N∑
j=1

aij(zj − zi), zi(0) = yi(0).
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Again, letting z = col(z1, · · · , zN ) and x̄i = xi −Xizi gives

˙̄xi = (Ai + bikici)x̄i + (biRi −Xi)vi
ż = −Lz, z(0) = y(0).

We claim that there exists a matrix ki such that Ai + bikici is Hurwitz. If so, the proof
can be completed without difficulties by following the procedure in Theorem 4.3.

In fact, from (17), we have bTi Pi = νici. Letting ki = −λ̂iνi gives

Mi , (Ai + bikici)TPi + Pi(Ai + bikici)

= (Ai − λ̂ibibTi Pi)TPi + Pi(Ai − λ̂ibibTi Pi)

= AT
i Pi + PiAi − 2λ̂iPibibTi Pi.

Recalling (18) and letting λ̂i > 1 gives

Mi , (Ai + bikici)TPi + Pi(Ai + bikici) < 0

Since Pi is positive definite, Ai + bikici is Hurwitz by Theorem 4.6 in [9]. The proof is
complete. �

Remark 4.7. Although we only consider multi-agent systems under a fixed topology,
these conclusions still hold when the communication topology varies and switches among
a finite number of strongly connected and balanced graphs by taking common Lyapunov
function as that in [12].

Remark 4.8. In contrast to many existing average consensus results on single inte-
grators [1, 12, 13], this abstraction-based framework can handle heterogeneous gen-
eral multi-agent systems with possible general graphs by a two-level design. In fact,
through such an abstraction process, the heterogeneous linear multi-agent agents are
homogenized and further converted to well-studied integrator-type systems. That is,
the complexity from dynamics is decoupled from that of the average consensus goal
and communication topology. In this sense, this two-level approach might provide a
promising framework to handle multi-agent systems with both complex dynamics and
sophisticated tasks.

5. SIMULATIONS

For illustrations, we present an example and consider four agents with following system
matrices

A1 = 1, b1 = 1, c1 = 1,

A2 =
[

0 1
−1 0

]
, b2 = col(0, 1), c2 = [1, 0],
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1 2 3 4

(a) The graph G1

1 2 3 4

(b) The graph G2.

Fig. 2. The communication graphs.

(a) (b)

Fig. 3. Profiles of all outputs under the controllers (15) and (16).

A3 =

 0 1 0
−1 0 1
2 0 1

 , b3 = col(0, 1, 1), c3 = [0, 1, 0].

A4 =
[
0 1
0 0

]
, b4 = col(0, 1), c4 = [1, 0].

We assume the topology is switching between two strongly connected and balanced
graphs Gi (i = 1, 2) described by Figure 2 with unity weights. The switchings are
periodically carried out in the following order {G1,G2,G1,G2, · · · } with a period T = 5.

It can be verified the systems are minimal with no transmission zero at the origin.
By Remark 4.7 and some further manipulations, the output average consensus problem
of them can be solved by the controllers (15) and (16). The effectiveness is also verified
by the simulation results with selected gain matrices depicted in Figure 3.

6. CONCLUSIONS

A two-level approach was proposed to solve the output average consensus problem over
heterogeneous multi-agent systems. In conjunction with abstraction techniques, several
different protocols were derived for those agents. Future work includes extensions to
more general graphs and nonlinear cases.
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