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SUMMARY

This paper investigates the relative attitude formation control problem for a group of rigid-body agents using
relative attitude information on SO(3). On the basis of the gradient of a potential function, a family of dis-
tributed angular velocity control laws, which differ in the sense of a geodesic distance dependent function,
is proposed. With directed and switching interaction topologies, the desired relative attitude formation is
showed to be achieved asymptotically provided that the topology is jointly quasi-strongly connected. More-
over, several sufficient conditions for the desired formation to be achieved exponentially and almost globally
are given. Additionally, numerical examples are provided to illustrate the effectiveness of the proposed
distributed control laws. Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently, consensus or synchronization of multi-agent systems has been widely studied in order to
make all agents reach a common state of interest. Attitude synchronization, in fact, is a nonlinear
consensus problem defined on the Lie group SO(3), which consists of all orthogonal matrices in
R3*3 with unit determinant, and it has also been a hot topic with many applications in practical
systems including satellites, spacecrafts, and mobile robots [1-5].

In real applications, attitude formation is an important practical problem, especially for multi-
camera coordination [6] and formation flying [7, 8], which is a generalization of attitude synchro-
nization. Different from the widely studied attitude synchronization [1-5], attitude formation forces
the relative attitudes between agents to achieve the desired ones. Because of the inherent nonlin-
earity, very few results on attitude formation are obtained in general situations. In fact, a spacecraft
formation problem addressed in [9—11] forces a group of agents to track a common time-varying
reference attitude (which might be viewed as a leader), which is converted to a leader—follower
problem to synchronize the orientations of the agents eventually.

It is well known that the connectivity of interaction topologies is a key to achieving the collective
behavior in a multi-agent network. Existing results on attitude coordination mostly require the inter-
action topology to be connected at every time [1, 3, 4, 6, 8—13]. However, multi-agent interaction
topologies may change over time in practice because of link failures and energy saving. In the study
of such variable topologies, a well-known connectivity assumption, joint connection, is employed
to guarantee multi-agent consensus for first-order or second-order linear or nonlinear systems [2, 5,
14, 15] without requiring connectedness of the graph at every moment.
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The objective of this paper is to study the distributed attitude formation control design on the
basis of relative attitude information on SO(3). Here, we formulate the desired formation using
relative attitudes between agents on SO(3) directly and then propose a family of distributed con-
trol schemes employing the three parameter representations of error attitudes. With switching and
directed interaction topologies, we show that the desired relative attitude formation can be achieved
when the topology is jointly quasi-strongly connected (JQSC). We also give an estimation for the
region of convergence from which the relative attitude between any two agents is asymptotically
stabilized to the desired value. Moreover, we provide several sufficient conditions for the relative
attitude formation to be achieved exponentially and almost globally.

Existing results on attitude formation mostly use absolute attitudes of the agents to define the
desired formation [16]. In [12, 13], the formation is formulated on the difference of the Modified
Rodriguez Parameters for the orientations of any two agents, and a leader as the role of a reference
attitude is defined to make the formation meaningful on SO(3), where the absolute attitude of each
agent in these papers actually is known or could be computed beforehand. Unlike these formulations,
we focus on the desired relative attitude directly on the attitude space SO(3) and give the distributed
control on the basis of neighbor information without requiring a reference leader. In [8], the desired
absolute attitude of any agent is not assigned beforehand also; however, the underlying interaction
topology is assumed to be an undirected ring.

Concerning a system of rigid-body agents, it is common to assume the absolute attitude of each
agent to a global inertial frame is available and the agents can transmit their absolute attitudes to
other agents [1, 3, 9-13, 16]. However, a global reference frame is not always available. Even when
it is available, for example, using GPS, interference from the measurement process may influence
the accuracy of the final formation. In this paper, the agents are only able to measure the relative
orientations to their neighbors on SO(3), whereas the absolute attitudes of agents are not required
in the control. Furthermore, the proposed control scheme for attitude formation problem here is also
based on the well-known joint connection assumption for directed and switching interaction graphs.

This paper is organized as follows. In Section 2, necessary preliminaries for the rotational motion
on SO(3) and graph theory are given. In Section 3, relative attitude formation between the agents
is formulated, and properties of error attitudes are presented. In Section 4, the proposed control
scheme is introduced, and then the convergent result with directed and switching topologies is given.
Following that, the exponential convergence and global behaviors of the proposed control with fixed
inter-agent graph are discussed in Section 5. Finally, illustrative examples are provided in Section 6,
and the paper is concluded in Section 7.

2. PRELIMINARIES

In this section, we give preliminaries on three-dimensional attitudes and graph theory for the follow-
ing analysis in this paper. We first introduce the hat and vee operators used throughout the paper. Let
50(3) be the set of skew-symmetric matrices in R3*3. The hat operator is a map A : R?® — s50(3)
transforming a vector @ = [ay,a»,as]’ to @ in the form of [17, 18]

0 —d3 djp
Zl\ = as 0 —dai
—dz di 0

It holds that @b = a x b for any b € R3. The inverse of the hat map, denoted by the vee operator
V 1 so(3) — R3, extracts the components of vector a from @. Some useful identities related to
these two operators are summarized as follows:

@’ =—-a"al; + ad”, (1)

tr(ﬁ/ﬁ) = —2a"b, )

@A+ ATa)Y = (tr(A) Iz — A)a, (3)
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tr(4a) = —a’ (4 — A7)V, 4)

where a, b € R3, A € R3*3 and tr(-) stands for the matrix trace.

2.1. Three-dimensional attitudes

In this paper, we consider the pure rotational motion of rigid bodies. Let A be a reference frame
and B be the body-fixed frame attached on a rigid body. The attitude of the rigid body relative to
the reference fame A is defined by the rotational transformation matrix from .4 to 5, denoted by
Rgup € R3*3 It is known that the set of attitudes forms a Lie group, denoted by SO(3) [19], that is
SO3) = {R € R¥>3 | RTR = I3, det(R) = 1}. From the transport theorem [20], the kinematics
of the relative attitude R, is governed by

Rab = aﬁbRab = Rabafb5 ©)

where ® fb is the angular velocity of the rigid body viewed from the reference frame .A and resolved
in A as well and wfb is the same physical velocity resolved in B. It holds that w;“b = Rabwfb.

Remark 2.1

The attitude in this paper follows the definition given in [17, 18] determined by the rotational trans-
formation from the reference frame to the body-fixed frame. In some other references (e.g.,[21, 22]),
the relative attitude is defined by the rotational transformation between different coordinate expres-
sions of the same physical vector in different frames (from A to 5), which is, in fact, the inverse of
the transformation in our case.

For any R € SO(3) and a € R3, the following equality holds
RaRT = (Ra)". (6)

For a rotation R € SO(3), its angle and axis (6, k) is determined using

0 = arccos ((tr(R) — 1)/2) € [0, ], @)
_(R=R")Y
k = W es y (8)

where S = {u € R |uTu = 1} is the two-sphere. Notice that the equation (8) for the rotation axis
k is valid only when 6 € (0, 7). Indeed, k is not determined when 6 = 0, and there are two axes
with an opposite sign each other when 6§ = . On the contrary, the rotation R corresponding to any
angle 6 € [0, ] and axis k € S? is given by the Rodrigues’ formula [19]

R = exp(0k) = I3 + k sin6 + k(1 — cos 0), )

where exp(-) is the matrix exponential. From (7) and (9), we have that R = /5 if and only if 6§ = 0.
The angle of a rotation on SO(3) has a geometric interpretation as the Riemannian distance.
Namely, define the metric tensor (-, -) g for any rotation R € SO(3) as

1
(Vi,Va)g = Etr(vlT V2), VVi,Vs e TrSO(3), (10)

where TRSO(3) = {Rv|v € R?®} = {pR|v € R3} is the tangent space of SO(3) at R. Then
the Riemannian distance between any two rotations P, Q € SO(3), which also is the length of the
shortest geodesic curve connecting the two rotations, equals the angle of their relative rotation [19],
that is,

dso@)(P. Q) = 0(PT Q) € [0, ].

Aset B, (Q) C SO(3) centered at a rotation Q € SO(3) is called an open (geodesic) ball of radius
rif B-(Q) ={R € SO(3)|dsoz)(R. Q) <r}.
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Let f : SO(3) — R be a continuous function. For any R € SO(3), if there exists a unique
tangent vector in Tr SO(3), denoted by Vg f, such that

L i) = (RAVIk YV € TRSOG),
ds s=0

where y(s) is any curve on SO(3) passing y(0) = R with tangent vector y’(0) = V, then the

gradient of f on SO(3) at R exists and equals Vg f (see [23] for details). Suppose R,p(¢) is a

smooth trajectory of (5) and Vg, ) f exists at time 7, then f(R,p (7)) is differentiable at # and can

be computed by the following equation

J (Rab) = (VRyy f- Rab) Rap- (11)
The following two lemmas are useful for the properties of rotations on SO(3).

Lemma 2.2
Suppose f(P) = h(dsoa)(P,Q)), where Q € SO(3) and h : [0,7] — R is continuous
differentiable. The gradient of f on SO(3) at P € SO(3) is given as

—PH(@O)k,if0 € (0,7)
Ve f =1 05, ifd =0orm,andh'(0) =0,
not exist, if 6 = 0orm,and 4'(0) #0

where (0, k) is the angle and axis of the relative rotation P7 Q.

Lemma 2.3
For any P, O € SO(3) with (8. k) and (8, k) as their respective angles and axes, the following
equations hold for the angle and axis (6, k) of the relative rotation PT Q:

0 0 0, 0 0,
cos — = |cos £ cos = 4 sin £ sin kT k,
2 2 2 2 27

’

0 .0 0 0 0 0
cos — sin —k = [ cos -2 cos -~ + sin = sin kT k,
22 2 2 2 27

0 0, 0 0, 6 Og ~
(— sin 7” cos qu,, + cos 7” sin ?qkq — sin 7” sin Eqkpkq) .

Lemma 2.2 can be showed by taking y(s) = Pexp(vs), v € R3 and then computing
(df(y(s))/ds) |s=0. And Lemma 2.3 can be verified by expanding the identities 1 + 2cosf =

tr(PT Q) and 2k sinf = PTQ — QT P with the Rodrigues’ formula (9) of P and Q. The details
of the proofs are omitted here.

2.2. Graph theory

A directed graph (digraph) G = (V, £) consists of a node set V = {1,2,...,n} and an edge set
&€ C VxV, in which an edge is an ordered pair of distinct nodes. A node j is said to be a neighbor of
iif (j,i) € E,and N; = {j | (j,i) € &} is denoted as the set of neighbors of node i. A directed path
of G is a sequence of distinct nodes in V such that any consecutive nodes in the sequence correspond
to an edge of G. A node j is said to be connected to i if there is a directed path from j to i, and j
is a root if it is connected to every other node. A digraph G is said to be quasi-strongly connected
(QSC) if G contains a root node. G = u;’;lgi is referred to as the union of a collection of digraphs
{G1,Ga, ..., Gm}, each with vertex set V, if G has the node set V and edge set £ equaling the union
of the edge sets of all the digraphs in the collection.

The adjacency matrix A of a digraph G is defined such that a;; = 1if (j,i) € £ anda;; = 0
otherwise. Then the Laplacian L = [/;j]nxn of G is defined such that /;; = —a;; wheni # j and
lij = Y p_,aix wheni = j. A digraph G is QSC if and only if its Laplacian has a simple zero
eigenvalue and all other eigenvalues have positive real parts.
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A graph G = (V,€) is undirected if the node pair of each edge is unordered. An undirected
graph is connected if there is an undirected path between every pair of distinct nodes. A connected
component of G is a maximal connected subgraph of G. An undirected graph with n nodes is a tree
if it is connected and has n — 1 edges. The nodes with only one neighbor in a tree are called leaves.
The induced subgraph of G by a nonempty node setid C Vis Gy = (U, E N (U x U)). The details
can be found in [24, 25].

3. PROBLEM FORMULATION

We investigate the relative attitude formation control problem for a group of n (n = 3) rigid-body
agents. In this section, we formulate the problem and give the definition and properties of the error
attitudes of the formation.

3.1. Relative attitude formation

Let V = {1,2,...,n} represent the set of agents, and suppose an inertial reference frame F and
the body-fixed frame B; for agent i € V are defined. We denote R; and R;; as the attitudes of 5;
relative to F and B, relative to B;, respectively. Then it holds that R;; = RT R;. We regard R; as
the absolute attitude of agent i and R;; as the relative attitude of agent j to agent i. Let w; be the
angular velocity of agent i with respect to the inertial frame F resolved in B;, which is the control
variable in our problem. Moreover, we denote w;; as the angular velocity of agent j viewed from
agent i and resolved in B;, thatis, w;; = R;jw ; — w;. Similarly, we refer to w; as absolute angular
velocity and w;; as relative angular velocity. From (5), the respective kinematics of R; and R;; are
given as

R; = Ri®i, Rij = &Ry 12)
In the paper, a desired relative attitude formation between the agents is expected to achieve,
denoted as

{RE@):10,00) > SOG) i, j €V.i # )}, (13)

where Rl-d- () is a smooth function of time representing the desired relative attitude of agent j to

j
agent i. In the following, whenever there is no confusion, we drop the explicit dependence of Rldj
on time. To achieve a feasible formation for the group of rigid-body agents, the desired formation

(13) should be compatible, that is,
Rlde?i = 1, R:’ik = dejR;'iks Vi, j,keV. (14)

Suppose that, for any possible neighbor agent j of agent i, the desired relative attitude Rldj is known
to agenti. ) )
Because Rz‘.ij evolves on SO(3), Rfij € Tra SO(3). Hence, Rl‘.i. R?i € 50(3), and we denote
. ij
wfj = (Rl‘-’lj R?i)v as the desired relative angular velocity of agent j to agent i resolved in 5;. Then

leij satisfies the following differential equation
RL =54 RY. (15)

For each agent i € V), let cof (t) : [0,00) — R3 be a smooth function of time. Then w?(f) =
{w?’ (t)}iey can be viewed as the desired absolute angular velocity for the system of agents if the
following equations hold

ol (1) = REMwI(t) —0i (). Yi,jeV.t=0. (16)

In the paper, we select an arbitrary function @9 (¢) satisfying (16) and assume that wf () is known
to agent i. In fact, we can choose wf(t) = —w‘llz(t)/2 and let wl?l(t) = Rl?il (1) (w‘ll(t) + w‘f’i (t))
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fori = 2,...,n. Similarly, whenever there is no confusion, we drop the explicit dependence of the
desired absolute angular velocity on time.

We consider relative attitude formation control at the kinematic level, which is described as
follows.

Relative attitude formation problem: construct an angular velocity controller for each agent to
make the relative attitude between any two agents converges to the desired one, that is, R;; — Rf'j
forany i, j € V as time tends to infinity.

As a special case, we also consider the static relative attitude formation problem, that is, the
desired relative attitude Rldj for any agent pair (i, j) is independent of time and therefore is constant.

In this case, we choose wf(~) = 03 on [0, 00) forany i € V.

3.2. Error attitudes

For any ordered agent pair (i, j), we define the error attitude between the actual relative attitude R;;
and the desired relative attitude Rl‘.ij as E;; = R;j R;’.Zi. Denote (6;;, k;;) as the axis and angle of the
error rotation E;;. Apparently, the desired formation is attained when E;; = I3 or 6;; = 0 for any
i#j.

From the rotation kinematics (12) and (15), the motion equations for the error attitudes are
governed by

Eij = 8 Eij — Ej@L (1), Yi,jeV.i#j. (17)

It is worthwhile to notice that the error system (17) is nonautonomous because the desired
formation (13) is time varying.

We use E = {Ejj} jev,i+j € SO(3)""=1 to denote the state of the system (17), where the
product manifold SO(3)"~V is the n(n — 1)-fold Cartesian product of SO(3) with itself. From
(14), the state E should satisfy the following compatible conditions:

Eij = REETRY = RyELR;i, REEjRY = EFEi, Vi, j.k. (18)

Let D C SO(3)"™~D be the set of states satisfying (18), which is the state space of the system
(17). We use the metric in D as

dD(E, E) = ma); d50(3)(Eij, E_‘ij)’ VE, E €D.
i,jE€

Denote E¢ € D as the state such that E;; = I3 for any i # j. Then the desired formation is
achieved if and only if E (t) — E*, or equivalently dp(E (t), E¢) — 0, as t — oo.

In the paper, we use a geodesic distance dependent function # : [0,7] — R satisfying the
following assumption.

Assumption 3.1
h(-) is twice continuously differentiable on [0, 7], #(0) = 4’(0) = 0 and #'(-) > 0 on (0, ).

Remark 3.2
Here are some examples of 4 (-) satisfying Assumption 3.1:

() h(B) = 6%/2, K (6) = 6;
(i) h(6) = 2sin*(9/2), ' () = sinh;
(iii) h(Q) = 4sin®(8/4), h'(9) = sin(8/2);
(iv) h(0) = —4log(cos(6/4)), h' () = tan(6/4).

For a rotation R € SO(3) with (0, k) as its angle and axis, 4'(8)k actually is a three-parameter
representation of the rotation. Examples (i) and (iv) correspond to the rotation vector representation
[5] and modified Rodrigues parameters [21], respectively. And examples (ii) and (iii) are discussed
in [26].

The following lemma gives some useful properties for the error attitudes in the state space. The
proof is given in Appendix A.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:4457-4477
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Lemma 3.3
The following statements are satisfied for the error attitude E € D.

(i) Foranyi,j €V, 6;; =0;;.If 0;; < m, then
W (0)kij = —h'(0;:) Rk ji = —h'(8;:) Rijk ji. (19)
(i) Foranyi, j,k € V,
Oik < 0;j + Oix (20)

always holds. Suppose without loss of generality that 6;; > 6;x and 6;; = 6. Then if
0ij + 6kj + Oik < 2m,

B O Ok ki =0, B (0;:)h 00k Tk jx = 0, Q1)

where the equal sign in the first and second inequality holds if and only if E;z = I3 and
Eji = I3, respectively.

Remark 3.4
The inequalities in (21) result from the geometry of SO(3). Examples that the inner products in (21)
have a negative sign when 6;; + 0; + 0;x = 27 are given as follows:

() Eij = exp(—aiu) and E;; = exp(aaut), where u € 8%, ay, 05 € (0,7) and a1 + o > 7.
Then from (18), 0 =27 —a; —a, and Rfljkjk = —u. In this case, 0;; +0k; +0;x = 27 and

B (0:)h Ok ki = —h' (@) (e2) < 0,
(00 @30k Tk ji = —h (@)l @r — a1 — az) < 0,

(i) E;; = exp(aty) and E;; = exp(a#iz), where @ € (27/3,7), uj,uy € S? and ul'u, =
—cos(a/2)/(1 — cos(a/2)). Then from (18) and Lemma 2.3, 6;x = « and Rldjkjk =
cos(at/2)(uy — uz) + sin(a/2)u u,. In this case, 6;; + 0; + O;x = 3o > 27 and

6 Ok ke = 1 (@)u] uy <0,
H (070 (0)k Tk je = —h' (@)? cos(et/2)(1 — u] uz) < 0.

4. ATTITUDE FORMATION WITH SWITCHING TOPOLOGIES

In this section, we suppose the interaction topology for the multi-agent system is time varying with
all possible inter-agent topologies represented by digraphs Gx = (V, &),k = 1,2,...,m, where
the edge (j,i) € & indicates that agent i can obtain the relative attitude R;; when the underlying
interaction graph is Gr. This makes sense in many cases. Actually, in some practical situation,
when agent i takes a vision camera as its sensor to observe the motion of its neighbors, the attitude
measurement can be extracted from image processing [18]. Then under this assumption, the error
attitude E;; is available to agent i if j € N; at any given time.

Let Gy (r) be the inter-agent topology of the system, where o (¢) : [0, 00) — {1,2,...,m}is aright
continuous piecewise constant switching function. As usual, we assume there is a non-vanishing
dwell time, denoted by 7; > 0 for o (¢), as a lower bound between any two consecutive switching
times, that is, the switching instances {t; |/ = 1,2, ...} satisfy inf;(7;41 — 77) = 74. Define the
union graph of G, () during a time interval [t1,#,) as G([t1.12)) = User, 1,)%0@)- The inter-agent
graph Gy (s is said to be JQSC if there is a constant 7 > 0 such that G([t,t 4 T')) is QSC for any
t = 0, which is widely used in [2, 5, 14, 15].

In the following, we will first propose a distributed algorithm for the relative attitude formation
problem and then give a rigorous stability analysis for the desired state E®.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:4457-4477
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4.1. Control design

Define the local potential function for agent i € V at time instance ¢ as

gi(R)= Y h(By)= > h(dsom(Ri.R;R%)).

JEN; (1) JEN; (1)

From Lemma 2.2, the gradient of ¢;(R;) with respect to the absolute rotation R; on SO(3) is
given by

VRi(/Ji =—Ri Z h/(O,-j)’IE,-j.
JEN; (D)

Notice that if 4’(;r) # 0, the gradient Vg, ¢; at time ¢ actually does not exist when 6;; = 7 for some
J € N;i(t). Then combining the kinematics (12) with a basic idea of descent gradient algorithm, we
propose the following neighbor-based feedback control law:

wi=0lO+ Y WOpkyj. i=12...n, (22)
JEN; ()

where the term wf is used to compensate the impact caused by the dynamics (15) of the desired
relative attitude formation. When 6;; = n for some j € N;(¢), from (1) and (9), there are two
opposite axes k;; for the rotation E;;, and they satisfy E;; = —I3 + 2k; jkl-Tj. Hence, k;; can be
derived by computing the unit normal vector of the plane formed by the null space of E;; + I3, and
here, we stipulate that the axis k;; in the control (22) is chosen as the one in the upper-left side of
the plane. The control law (22) is thus uniquely defined for every possible rotation of the system.

4.2. Stability analysis

The desired state E° is an equilibrium of the closed-loop system composed of motion (17) and
controllers (22). In this section, we analyze the asymptotic stability of this desired equilibrium.
For any unordered agent pair (7, j ), we define V;; (E) as

Vij (E) = h(8;).

Because of the angular velocity controllers (22) are piecewise continuous in time, V;; (E) along
the trajectory of the closed-loop system (17) with (22) is continuous and piecewise differentiable in
time. We therefore consider the upper-right Dini time derivative of V;;(E) along the trajectory of
the closed-loop system (details about Dini derivative can be found in [27, 28]). Suppose 8;; < w,
then from (2), (6), (10), (11), (16), (17), (19), Lemma 2.2, and the identity E;;k;; = k;;, we obtain

DYVi;(E) = (Vg Vij, DV Eij)E,;
= (Eijh' (0:))kij. ®ij Eij — E;;®%) kg,

1 ~ . A
=t [—h/(eij)kijEiY; (wijEij - E,-ng-)]

(23)
= h’(@l])kg (Rl-ja)j —W; — ng;i + wld)
=W Ok Y W Ok — 1 O;0kT; D B 600k k.
keN; (@) keN; (1)
Let
V(E) = max Vij(E) = h(dp(E . E®)),
l’]
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and Z(E) = {(i,j)|V(E) = Vi;(E)}. Because h(:) is strictly increasing by Assumption 3.1,
Z(E) is the set of agent pairs possessing the maximal geodesic distance between the actual relative
attitudes and the desired ones. And we have that DY V(E) = max;, jyez(g) D" Vij (E). Denote

R ={E € D|dp(E, E®) < 21/3).

In the following, we will first analyze DYV(E) for any E € R in Lemma 4.1, which follows
directly from Lemma 3.3. Then we discuss the solutions of (17) with (22) starting from R at any
time in Lemma 4.2.

Lemma 4.1

Forany E € Randt = 0, DYV;;(E) < 0 forany (i, j) € Z(E) and DYV(E) < 0. Moreover,
for any (i, j) € Z(E), D1V;;(E) = 0 at time ¢ if and only if E;x(t) = I3 for any k € N;(t) and
Ejr(t) = I3 for any k € Nj(¢).

Lemma 4.2

Forany E € R and 7o = 0, the trajectory E (¢) of the closed-loop system composed of (17) and (22)
starting from E at t, is defined for all ¢ = ¢¢ and is unique; E (¢) € R for any t = to and V(E (:))
is non-increasing on [fg, o). Furthermore, as a function of #y and E , the trajectory is continuous in
to and E on [ty, 00) X R.

Proof

Because E € R, DT V(E (ty)) < 0 by Lemma 4.1. Then it holds that E () € R for any ¢ > t and
V(E (-)) is non-increasing on [ty, 00). Because of the right-hand side of the closed-loop system (17)
with (22) is piecewise continuous in ¢ and Lipschitz in E on [ty, 00) X R, the conclusion follows
consequently (see [29], Theorems 3.3 and 3.5). O

Then take any #; = 0 and suppose E (¢1) € R. Lemma 4.2 shows that E(¢) € R forany ¢t > t;
and V(E (-)) is non-increasing on [t1, 00). Let @« = V(E (¢1)) and define another set of agent pairs as

Ko@) =G ) [V (E@) = a}, =11

Apparently, Ky (#1) # 9. Then we give the following three lemmas. In fact, Lemma 4.3 shows that
any agent pair not in /Cy, at #; will never enter it, and once any agent pair in I, leaves the set, the
pair will never return. Following that, Lemma 4.4 displays that if E (¢;) # E°, then Ky is empty at
any t = t; + (n — 1)T under certain mild conditions on the connectedness of the inter-agent graph
Go(r), while Lemma 4.5 further shows that V(E (-)) on the time interval [t; + (n — 1)T + 74, 00)
has an upper bound strictly less than « and independent of ¢;. The proofs are given in Appendix B.

Lemma 4.3
For any agent pair (i, j), if there is a moment ¢’ = f; such that (i, j) & Ky (t'), then (i, j) & Ku(t)
forany ¢t =1’

Lemma 4.4
Suppose Gy (1) is JQSC with time constant T, that is, G([¢,¢ 4 T)) is QSC forany ¢ = 0. If E(#1) €
R\{E*®}, then Ko (t) = @ foranyt =1, + (n — 1)T.

Lemma 4.5

Suppose Gy is JQSC with time constant 7 and dwell time 7z > 0. If E(¢;) € R\{E®} and
V(E (1)) = «, then there exists a §, > 0, independent of ¢, such that V(E (¢)) < a — 84 for any
t=t1+(m—1DT + 14.

We are now ready to give the main result of this section, that is, when the initial relative atti-
tude R;j(fp) is contained within the open geodesic ball an/3(Rf~1j (t0)) for any agent pair (i, j),
the desired relative attitude formation is achieved eventually provided that the inter-agent graph is
JQSC. In other words, as t — oo, any agent i € )V will rotate itself with the desired absolute
angular velocity wf (t) and at the same time maintain the relative attitudes to other agents as the
desired ones.
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Theorem 4.6

Suppose G () is JQSC. The desired equilibrium E ¢ is uniformly asymptotically stable with respect
to the closed-loop system composed of (17) and (22). Moreover, R is contained in the region of
attraction.

Proof

We first show that E ¢ is uniformly stable. For any ¢ € (0, ] and any #9 = 0, let § = min{e, 27r/3}.
Take any initial state E (fg) € D satisfying dp(E (t9), E®) < §. Because § < 2m/3, V(E(-)) is
non-increasing on [tg, co) by Lemma 4.2. Hence, dp(E (¢), E¢) < dp(E (1), E®) < § < ¢ for any
t = to by Assumption 3.1. This implies E is uniformly stable.

In the following, we use E(z;19, E) to denote the trajectory of the closed-loop system start-
ing from E € D at time fp > 0. Take any E € R and any 79 = 0, we next show that
lim; 00 E(t;19, E) = E¢. B

From Lemma4.2, E(¢; 19, E) € Rforanyt = tg and V(E (-; 9, E)) is non-increasing on [to, 00).
Then because of V(E (-;7o, E)) = 0 on [t9, 00) by Assumption 3.1, there is a constant o = 0 such
that lim; o V(E (¢: 79, E)) = a. Because the trajectory E (t; fo, E) C R is bounded, its positive
limit set denoted by L(fo, E) C R is nonempty. For any limit point E € L(to. E ), there exists an
increasing time sequence {fx } such that as k — oo, fy — oo, and E (t; t9, E) — E. Then we have
that V(E) = « by the continuity of V.

Take any E € L(to, E), and suppose E # E°. Because V(E) = « and E € R\{E®}, from
Lemma 4.5, there is a §, > 0 such that

V(E(fo + (n — DT +14:10, E)) < — 84, Viy € [tg, 00). (24)

Because E € L(to, E), for any & > 0, there is a moment ¢; = ¢ such that dp (E (¢1; ?o, E), E) <
€. On the other hand, from Lemma 4.2, the trajectory of the closed-loop system starting from R
is continuous in the initial state. Hence, for the positive number &, in (24), there exist & > 0 and
t1 = to such that dp(E (t1:t9, E), E(t1;11, E)) < &, and

dp(E (t2: 10, E), E (t2: 11, E)) < 8/(21), (25)

where t, = t; + (n — 1)T + 14 and ) = maxge[o,27/3] 1’ (0). Notice that 7 exists and is positive by
Assumption 3.1.
For any E 1, E? e R, we have that

V(E') = V(E?®) = h(dp(E', E®)) — h(dp(E? E®))
<n|dp(E',E€) —dp(E* E°)| < ndp(E', E?).

Then from (25), V(E (t5; to,_E'))— V(E (t2; 11, E)) < 84 /2. Because V(E (t2; 11, E)) < a—44 by
(24), this implies V(E (12; 19, E)) < o — 84/2, which contradicts the fact that « is the lower bound
of V(E (-; ty, E)) on [tg, 00). Hence, L(ty, E) = {E*®}, which implies lim;_,oc E(t; 19, E) = E°.
The proof is completed. O

Theorem 4.6 shows that the desired equilibrium E¢ is asymptotically stable with the region of
attraction containing R provided that the inter-agent topology is JQSC. Because of the geometry of
S0O(3) and the uncertainty of the topology graph, the region of attraction for the desired equilibrium
E* in Theorem 4.6 is the best we can estimate for the general formation problem.

5. ATTITUDE FORMATION WITH FIXED TOPOLOGY

To obtain better results about the convergence rate and the convergence region, we discuss some
special cases of the relative attitude formation problem. In this section, we suppose the inter-agent
graph is fixed and denote it simply by G = (V, £). We give the sufficient and necessary condition
for the desired relative attitude formation to be locally exponentially convergent in Section 5.1, and
give several sufficient conditions for the static relative attitude formation to be achieved from almost
all initial rotations in Section 5.2.
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5.1. Exponential convergence

When the inter-agent graph is fixed, the control law (22) can be written as

o =0l O+ Y WOk, i=12...n. (26)

JEN;
From Theorem 4.6, the desired equilibrium E° is uniformly asymptotically stable with respect
to the closed-loop system composed of (17) and (26) provided that G is QSC. We then demonstrate

that E° is further exponentially stable when 4”7 (0) > 0. Notice that the exponential stability of E°
is robust with respect to a certain class of perturbations (see [29], Lemma 9.1).

Theorem 5.1
The desired equilibrium E€ of the closed-loop system given by motion equations (17) with
controllers (26) is exponentially stable if and only if G is QSC and A”(0) > 0.

Proof

We linearize the closed-loop equations about E€ (see [30] for the linearization of dynamics on
S0O(3)) and show that the corresponding equilibrium of the linearization system is exponentially
stable if and only if G is QSC and A" (0) > 0.

Let ¢ € R be a perturbation parameter, and suppose the initial state of the system is a perturbation
of E€ denoted by E°® = {exp(ew;;Uij)}i jev.izj € D, where a;; > 0 and u;; € S*. Let E (1;¢) be
the trajectory of the closed-loop system starting form E® at ¢ = 0. Then we denote w; (¢; ¢) as the
angular velocity of agent i and 6;; (¢; €) as the angle of the error attitude E;; (¢; €). Notice that when
e =0, E° = E°. Hence, E(1;0) = E° and ;(t;0) = 0% (t) for any t > 0.

Let Ejje(t) = (3Eij(r:€)/d¢)|,_,- Then Ejje € s0(3) because of Ejje € Tg;, (1:050(3). We
denote x;; = (Eij¢) ", and take {x;;}; jev.ix; as the state of the linearization system.

From the control law (26) and the identity (8), the angular velocity w; (¢; €) satisfies

witie) =l + Y I CG))
keN;

ey BT (e 1Y
2 3 sin(bia (i ey L)~ Ea o]

Letw;.(t) = (0w;(t;€))/0¢)|,—y. Then from the previous equation, we obtain
wie =h"(0) Y xik. 27)
keN;

Because the trajectory Ej; (¢; ¢) satisfies the following differential equation
. N
Eij(t:e) = [E,-,- (t: )R (1)@ j (13 6) — @, (13 6) — Eij (1 g)w;fj(z)] Eij(t:e),

. A
it follows that Eyj, = (R;ij ()w je — @ic + Eijew? (z)) . Then substituting (27), we obtain the
linearization system as follows:
2 = ORE@W) D xj—h"0) Y xix—@f (O)xij, VijeVi#Ej (28
keN; keN;
Furthermore, from (18), the perturbed solution satisfies the following compatible conditions:
Eij(tie) = REOER(RG(0).  REOEj(t:e)RS; (1) = Ef(1ie)Euc(tze), Vi j.k.

Differentiating both sides of the aforementioned compatible identities with respect to ¢ and taking
e = 0 yields

d d . .
Xij :_Rij([)xjiv Rij([)xjk =Xk — Xij, Vi, j.k,
where we stipulate that x; = 0if k = i. Thus, x = [x T, xT,, ..., xT 1T € R3"=D js sufficient

to represent the state of the linearization system (28), and its motion equation is governed by
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Xy =H'0) Y (ke —xy)=h"0) Y xu—of(Oxy, j=23....n (29
keN; keN

Let L = [/;j]nxn be the Laplacian of G and partition L as

p=|l e ]
b Ln—l
Then the linearization system (29) can be written in matrix form as
i= [h”(O)K @I~ I ® af(z)] X, (30)

where K = 1,_1a” — L,_;. Because L1, = 0, we obtain

[ 1 05_1]‘1[1“ a” H 1 05_1} _[ 0 aT]
-1 In—1 b Lp— 11 In—1 B 0n—l -K |
Then K is Hurwitz if and only if G is QSC. Hence, there exists a positive definite symmetric matrix
P € RO=Dx=1) gych that KT P + PK = —I,_1 (see [29], Theorem 4.6). Notice that because
of P ® Zo\‘l" is skew symmetric, x7 (P ® c’o\‘li)x = 0 for any x € R3”=D Denote A3 and A, as
the respective largest and smallest eigenvalue of P. Then take the Lyapunov candidate as V;(x) =

xT(P ® I3)x, and compute the time derivative of V;(x) along the linearization system (30), which
leads to

Vi(x) =h"(0xT [(KTP + PK) ® I3]x = —h"(0)x"x < —V;(x)h"(0)/An.

Thus, [|x ()| < Apr/Am)||x(t0) ||~ ©/20 and our conclusion follows consequently. O

5.2. Static relative attitude formation

In this section, we consider the static relative attitude formation problem, that is, the motion
equations (12) of the absolute attitudes with controllers (22) are governed by

Ri=Ri Y WOjkyj. i=12...n. 31)
JEN;

Let R = {R;}icy € SO(3)" be the state of the closed-loop system (31) and denote the corre-
sponding error attitude by E(R) = {E;; (R)}; jev,i+ ;. We denote M as the entire equilibrium set
and M€ as the desired equilibrium set of (31), that is, M = {R € SO(3)" | Zjej\/i h(9;)ki; =
05, Vi e V}and M ={R € SO(3)" | E(R) = E*}.

Remark 5.2

For a general graph G, there are undesired equilibria in M. For example, suppose G is an undi-
rected ring graph and Rl.dj = [z for any i # j. Then any rotation R with Ry,..., R, distributing
equidistantly on a closed geodesic of SO(3) is also contained in M. In fact, the desired equilib-
rium set M€ C M is irrelevant to the inter-agent graph, and the equilibria in M\ M€ vary with the
inter-agent graph.

Let Qg = {R € SO(3)"|3(i, j) € £s.t. 6;; = m}. Notice that if h'(7) # 0, the right-hand
side of (31) is not continuous in R on Qg . Next, we give two lemmas: one gives the set which the
trajectories of the closed-loop system (31) from (almost) all SO(3)" approach, and the other gives
the linearization of (31) about an equilibrium. The proofs are given in Appendix C.

Lemma 5.3

Suppose G is undirected. As time tends to infinity, (i) if #'(7r) = 0, all trajectories of the closed-loop
system (31) approach M; (ii) if /(7)) > 0, the trajectories of (31) starting from almost all SO(3)"
approach M\ Qg .
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Lemma 5.4

For any equilibrium R € M if A'(wr) = 0 or any R € M\Qg  if /() # 0, the system matrix of
the linearization system of the closed-loop system (31) about R is equal to J(R) € R3"*3" whose
(i, j)th, 3 x 3 block is given by

— Y ken; HEG(R)T, if j =i
[J(R)]i,; = { H(Ei;(R)R, if j €Ni\
03, otherwise

where
HQ) = lcot Qh’(9)13 + [h”(@) — lcot Qh’(@):| kkT + lh’(@)ic\
2 2 2 2 2
for a rotation Q € SO(3) whose axis and angle is (0, k).

The following theorem shows that when G is an undirected tree, the desired equilibrium set M*
is almost globally asymptotically stable.

Theorem 5.5

Suppose G is an undirected tree and k() satisfies either (i) ' () > 0 or (ii) #'(x) = 0 and A’/ () <
0. The trajectories of the closed-loop system (31) starting from almost all SO(3)" approach M¢ as
time tends to infinity.

Proof
Take any R € M, and denote (6;;, k;;) as the angle and axis of E;; (R). We first show that

h’(@,‘j)k,‘j = 03, V(i,j) e&. (32)

Because G is a tree, it has at least two leaves, and we denote anyone of them as p. Because of
p only has one neighbor in G that we designated as ¢, R € M implies /' (6,4)k o4 = 03. Then
let Y = V\{p} and Gy = {U, &} be the induced subgraph of G by U. Because &, = E\{(p,q)}
and W' (0gp)kqp = —Rgph’(epq)kpq = 03, R € M implies Y ;¢ i jyeg, I (0ij)kij = 03 for
any i € U. Because of the subgraph G, is still a tree, we can repeat removing a leaf node of the
new induced subgraph until there are two nodes in the remaining graph. Then we obtain (32) by the
iteration.

Suppose A’'(w) > 0. Because there are undirected paths in G from any node to every other node,
we further obtain 4’ (6;;)k;; = 03 for any i, j € V by (18) and (32). Because of 4'(r) > 0, 6;; =0
for any i, j € V by Assumption 3.1. Hence, R € M?¢, and the conclusion follows consequently by
Lemma 5.3.

Suppose /'(rr) = 0. From Assumption 3.1, (32) implies 6;; = 0 or 7 for any (i, j) € £. Suppose
there exists an edge (p,q) € & with 6,, = 7, we then show R is unstable. By removing the
edge (p,q) in G, the tree graph is divided into two disjoint trees, and we denote the node set of
the two trees as V; and V,, respectively. Because 8,, = 7, there are two axes corresponding to
E 4 (R) opposite each other. We take any one of them and denote it as k 4. Let u = Rk 54 and
x =[xT . xIwithx; = Rl.Tu fori € V; and x; = —RiTu fori € V,. Forany (i, j) € &,
H(Ei;j(R))E;;(R)T = H(E;;(R))T by (9), and H(E ;i(R)) = R;; H(E;;j(R))T R;; by (19).
Then we use them to simplify the expression x 7 J(R)x and obtain xT J(R)x = —4h" () > 0.
Hence, J(R) has at least one positive eigenvalue, implying R is unstable. Then the conclusion
follows by Lemma 5.3. o

We then generalize the almost global convergent attitude consensus algorithm in [4, 6] to the
static relative attitude formation problem in the following theorem.

Theorem 5.6
Suppose G is undirected and connected, and the function 4(-) is chosen as
I (] b8
h(9) = aho(0).  ho(0) = o —| 3 +0 e (33)
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where a is any positive constant and » > 0 is a sufficiently large constant. As time tends to infinity,
the trajectories of the closed-loop system (31) starting from almost all SO(3)" approach the desired
equilibrium set M¢ .

Proof

From Theorem 4.6 and Lemma 5.3, because h'(7) = abme > 0, we only need to show that
any R € M\Qg » is unstable. Take any R € M\ Qg . In the following, we show that the system
matrix J(R) of the linearization system has at least one positive eigenvalue, and therefore, R is
unstable.

Denote 6;; as the angle of the error rotation E;;(R). Let « = 2n/(3(n — 1)) and Gr o =
(V,ER,a), where Eg o = {(i, j) € £ : 0;; < a}. We then claim that Gg 4 is not connected. Suppose
this is not true, then there is a path with the number of edges less than or equal to n — 1 between
any two distinct nodes p,q in Gr,q, implying 0,4 < (n — 1)aa = 27/3 by (20), and therefore,
E(R) € R. Because R is an equilibrium of (31) and R & M, E(R) € R contradicts the fact that
{R € SO(3)" : E(R) € R} is contained in the region of attraction of M¢ by Theorem 4.6.

Denote V; C V as the node set of a connected component of Gg o. Let Vo, = V\V; and &1, =
{GG,j)e&:i eV, j V). Then Vi, Vs # 0 due to G 4 is not connected, and £12 # @ due to G
is connected. For any (i, j) € &12, 6;; = « holds because (i, j) & ER a-

Take any u € S? satisfying u” R;k;; # 0 for any (i, j) € £1». Notice that such u exists because
&1, is a finite set. Let x = [xlT, - ,x,{]T, where x; = RiTu ifi € Vyand x; = —RiTu otherwise.
Then we have that

—bw

1 6,
xTI(R)x =—4 ) |:h”(9,~j)(uTRikij)2 + Ecot7’h (6:) (1 — (uTRik,,)z)} .

@.))€€12
Let y = min(i,j)eglz(uTR,-k,-j)z, and take any b > 1/(yo). Because 6;; =
o > 0 for any (i,j) € &ip, cot(6;5/2)/2 < 1/6; holds. Therefore, xT J(R)x >
=42 i )eers abe™?% (1 — bBy) > 0, implying J(R) has at least one positive eigenvalue. O

6. NUMERICAL EXAMPLE

In this section, we present numerical examples to show the desired properties of the proposed
formation control for a system of five rigid-body agents.

We consider the static relative attitude formation problem. The desired relative attitude formation
is assigned as R‘lii =exp(es(i —1)2r/5) fori = 2,...,5and R;"j for other distinct i, j calculated
by (14), where e3 = [0,0, 1]7. We take the following three geodesic distance dependent functions
satisfying Assumption 3.1:

hi(0) = 2k sin2(8/2),  ha(0) = k202, h3(0) = ks(1/b— (1/b + 0)e™?),  (34)

where k1, ks, k3, b are positive constants such that i1 () = hy () = h3(s). It can be verified that
the assumptions on the functions in Theorems 4.6, 5.1, 5.5, and 5.6 are all satisfied.

Suppose that there are two inter-agent graphs G; = (V,&;),i = 1,2, where the edge set £ =
{(1,2),(3,4)} and & = {(2,3), (3, 1), (4, 5)}. And suppose the switching signal is given as follows

© = 1, ifr € [Tyl, Tsl + Ty/2)
TV =2, ifr € [Tyl + Ty/2. (1 + 1)Ty),

where 7o, = 0.3and/ € {0,1,2,...,}. Itis easy to verify that G5 is JQSC.

We randomly choose the initial absolute attitudes of the system that satisfy E(0) € R. Taking
ks = 0.5, b = 2, we have k; = n2/4, k3 ~ 10 according to hi () = ha(mw) = hz(m). Apply-
ing the angular velocity controller (22) to each agent, Figure 1(a) shows the time response curve
of the distance from the trajectory E (¢) to the desired equilibrium E¢, and Figure 1(b) depicts
the evolution of the angles of error attitudes E1,, E13, E14, E15 with the potential function /.
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The Euclidean norm of angular velocities is showed in Figure 1(c). These figures demonstrate that
the desired attitude formation is achieved eventually as proved in Theorem 4.6.

Next, we suppose that the inter-agent graph G is a directed ring and consider the performances
of these controllers under certain perturbations. Because h}(0) = n2/4, h5(0) = 1, h3(0) =
20 are all strictly positive, the equilibrium point E¢ is exponentially stable under the controller
(26) with any of these three potential functions according to Theorem 5.1. Recalling Lemma 9.1
in [29], this exponential stability should be robust with respect to some vanishing perturbations
with a small relative magnitude with respect to dp(E (z), E€). As that in [30], we add a linear
additive perturbation A(t) = y,dp(E(t), E°) to the angular velocity of each agent and choose
yp at random between [—0.1, 0.1]. The evolution of the nominal system is depicted in Figure 2(a),
while Figure 2(b) shows one of the perturbed cases. We can find the stability property still holds
although the convergence rate is different, which verifies the robustness with respect to this special
class of perturbations.

To illustrate the global behavior the formation control (26), we consider an undirected ring and
take 1000 initial rotations R (0) that chosen uniformly at random in the whole state space SO(3)>
and then conduct simulations by applying the control law (26) with (34). It turns out that there
are 87, 443, and 0 number of failures to reach the desired formation with the respective functions
h1, hy, and hs. Figure 3(a) shows the curve of dp(E (¢), E€) in one of the simulations that both the
usage of /7 and /i fail to reach the desired formation because the distance dp(E (1), E€) does not
approach zero. In fact, from Figures 3(b) and 4, we can find the Euclidean norm of angular velocities
of each agent under different potential functions vanishes as time goes to infinity, which implies
the multi-agent system will converge to some steady state. While using the geodesic dependent
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functions /7 and /#, might make the trajectories of the closed-loop system get trapped in some
undesired equilibria, using the function (33) in Theorem 5.6 is able to deviate the trajectories from
those undesired equilibria and achieve the attitude formation as depicted in Figure 3(a).

7. CONCLUSIONS

In this paper, we discussed the relative attitude formation control problem of multi-agent systems.
We proposed a family of distributed angular velocity control laws using relative attitude information.
Then, with switching and JQSC interaction topologies, we showed that the desired relative attitude
formation is achieved asymptotically under certain mild assumptions on the initial relative attitudes
between agents. Moreover, we also gave several sufficient conditions for the desired formation to
be achieved exponentially and almost globally. Certainly, there are still many problems to be done
in attitude formation based on relative information, which is still under our investigation.

APPENDIX A: PROOF OF LEMMA 3.3

Because tr(E;;) = tr(E;;) by (18), we obtain 6;; = 0;; using (7). When 6;; < =, on the basis
of (6) and (8), we obtain k;; sin0;; = —Rfljkj,- sinfj; = —R;;kj; sin0;, which implies (19) by
Assumption 3.1.
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Because the rotations Rl‘.i- E ij;’.li and Ejj are similar matrices, their angles are same by (7).
Then from (18) and Lemma 2.3,

Ok O Ok . O . O, r
COST = |cos 7005 5 + sm;sm 7kijkik

If 0;; + 0;x < m, then 0, < 6;; + 0;x because of cos(0,x/2) = cos((0;; + 0ix)/2). Otherwise,
0ij + Oix > m = 0ji. Hence, 0 < 0;; + 01 always holds.

When 0; + 6;; + 0;x < 27, because of 0;; + 9/k + 0ix = 20;, 0;; < . Suppose cos(8x/2) =
—cos8(0;;/2) cos(b;x/2) — sin(6;;/2) sm(«9,k/2)k k. Then cos(0x/2) < —cos(0;; /2 + 0ik/2),
which contradicts 0 + 0;; + O;x < 2m. Therefore

Oix 0;; Oik 0; Oik
cos% = COSTJCOST +sm7]sm kg-kik.
Because 0 < 0;; < m, the previous equation implies sin(6;;/2) sin(6;x/ 2)k ki = 0, and
therefore, i’ (9,,)h’(9,k)kl kix = 0by Assumption 3.1. At the same time, /' (6;; )1’ (G,k)k kix =0
if and only if cos(0x/2) = cos(6;;/2) cos(0;x/2), which is equivalent to E;x = I3 due to 0 <
0;; . The other inequality in (b) can be verified similarly.

APPENDIX B: PROOFS OF LEMMAS 4.3-4.5

Proof of Lemma 4.3
Let 75, = t’ and {14, }72, be the (increasing) switching time sequence after 74,. Then o (t) is
constant on [tg,, 74, ) forany / € {0,1,2,...}.

We first show that (i, j) & Kq(?) for any ¢ € [t4,, T4, ). Suppose this is not true, because of
(i,)) & Ka(tgy), there is an s € (74, T4;) such that V;; (E(s)) = «. Then (i, j) € Kq(s) and
(i,j) € Z(E(s)). From Lemma 4.1, there are two cases for DV V;; (E (s)) = V,] (E(s)), and we
discuss them in the following respectively.

Case 1: VU (E(s)) < 0. Because V,, (E (-)) is continuous on (tg,. Ta, ), there is a t” € (z4,. 5)
such that V;; (E(-)) < 0 on (¢”,s]. Hence, V;(E(s)) < Vij(E(t")) < a, which contradicts
(i.]) € Kal(s).

Case 2: V;; J(E(s)) = 0. Denote the inter-agent graph on the time interval [t4,,74,) as G.
Then at least one of agents i and j has a neighbor in G'; otherwise, V;; i(E()) = 0on
[Tay» Ta;) by (23), which contradicts the fact that (i, j) & Ko (7a,) but (i, j) € Kq(s). With-
out loss of generality, suppose the neighbor set of agent i in G' is nonempty. Let U =
{i}U{k | k is connected toi in G'}, and denote ./\/1 as the neighbor set of any node k € U in G'.
Because NV} ! C U for any k € U, the motions of the error attitudes of agent pairs in I x U/ during
[Tao- Ta;) only depend on the motions of agents in ¢/ and are governed by

Eklkz = a)\klszklkz - Ek]kza]ilkz(t)ﬂ Vkl9k2 € U,
Wi = wZ(l) + Z h’(@ij)kkk/, Vk el. (35)
k'en

Because Vij (E (tq,)) < a and V;; (E(s)) < a, the state of the closed-loop system (35) at time 74, is
not an equilibrium point of (35). At time instance s, because (i, j) € Z(E (s)) and Vii i (E(s)) =0,
Eip(s) = I3 for any p €N by Lemma 4.1. Then for any p € N}, (p,j) € Kq(s) because
Ejp(s) = E],(S)RJI(S)E,I,(S)R (s) = EJ,(s) For any p € N if V; (E(s)) < 0, this turns to
case 1 and leads to a contradiction. Thus, Vp] (E(s)) = Oforany p € N/}, ! implying E pr(s) =13
forany r € N ; Repeating these arguments and combining (18), we obtaln E k,(s) = I3 for any
ki, k, € U, which implies that the state of the closed-loop system (35) at time s is an equilibrium
of (35). Therefore, the closed-loop system (35) has converged to an equilibrium point in finite time,
which contradicts the uniqueness of the solution of (35).
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Then for any t > 1,4, V;j(E(t)) < o as long as the graph Gs(;) is not switched. Because
Vi (E (t)) is continuous in ¢, this implies V;; (E (¢)) < « forany ¢ € [tg,, 74, ], thatis, (i, j) & Ka(?)
for any ¢ € [tq4,, Tq,]-

Because (i, j) & Kq(tq,), applying similar arguments on the time interval [z, 74,) reaches
the conclusion that (i, j) & Ky(¢t) for any t € [t4,,74,]. Repeating the previous arguments on

the remaining time interval [t4,, Ta3), [Tas, Tay), - - ., T€Spectively, we infer that (i, j) & Ky (?) for
any t =t O
Proof of Lemma 4.4

Because E(t1) # E¢,a = V(E(t1)) > 0.

Let Ju(t) = {i € V|3j € Vsuchthat (i, j) € Ky(?)} be the set of agents in Ky (). Because
Ka(t1) # 0, there are at least two agents in J,(#1) and Ju (%) C Ju(t!) for any 12 = ¢! > #; by
Lemma 4.3. Let J! = J,(t1) and KL = Kg(t1). We first show that at least one agent in J will
leave Jy () at some time ¢ € [t1,2; + T). Suppose that this is not true, that is,

Ju(t) = jal, Vtelt,t1+T). (36)
Then for any ¢ € [t1,# + T), the following two statements hold

E,(t)=13, YieJ), VYpeN), (37)

Ka(t) = KL (38)

We obtain (37) because, for any i € jal, suppose there is a time s € [f1,7; + T') such that
Eip(s) # I3 for some p € N;(t), then take any j € V\{i},

1) if (i, j) € Kg(s), then (i, j) & Ky(t) for any ¢ = s by Lemma 4.3.

(i) if (i, j) € Kq(s), then DT V;; (E (s)) < 0 by Lemma 4.1. Because D1 V;; (E(-)) is continu-
ous at non-switching time and right continuous at switching time, there is a § > 0 such that
DTVi;(E(-)) <O0on[s,s + §). Hence, V;; (E (1)) < Vij(E(s)) = a forany t € (s, s + §).
Then (i, j) & Kq(2) for any ¢t > s by Lemma 4.3.

As aresult, i € Jy(t) for any ¢t > s, which contradicts (36). Thus, (37) holds. Then from (23)
and (37), for any (i, j) € K, it holds that D™ V;; (E(-)) = 0 on [t1,#; + T), which implies (38).

Let G = G([t1.t1 + T)). Then G’ contains a root node that we designate as k.. Choose any
@i, j) e IC(}[. We first consider the case that there is a directed path from j to i in G’. Suppose
there is a number of n; nodes in the path. For convenience, we rename agent j as agent 1, the
second agent in the path as agent 2, and so on. The last agent, namely, agent i, is consequently
renamed as agent n;, and we obtain (n;,1) € Kq(¢) for any ¢t € [t;,¢1 + T) by (38). Because
agent n; — 1 is a neighbor of agent n; at some time s’ € [t;,ty + T), Ep, n;—1(s") = I3 by
(37). Then E;,,—1(s") = Eip, (s’)Rf’ni (s’)Eni,ni_l(s/)Rgi’l(s/) = E\i,p,(s’), which implies
(ni —1,1) € Kq(s’). Thus, (n; — 1,1) € Ky(z) for any ¢t € [t1,¢; + T) by (38). Repeating the
arguments, we obtain (2, 1) € Ky (¢) forany ¢ € [t1,t; + T), that is, V21 (E(¢)) = h(621()) = «
for any ¢ € [t1,t; + T). Because agent 1 is a neighbor of agent 2 at some time s € [t1,t; + T),
E»1(s”) = I5 by (37), which implies & = V,1(E (s”)) = h(0) = 0 and contradicts o > 0. Simi-
larly, for the case that there is a directed path from i to j in G’, we also obtain & = 0 and have a
contradiction. Then we consider the case that neither i is connected to j nor j is connected to i in
G’. Because there is a directed path from k, to i, we obtain (J, k,) € Kq(¢) forany ¢ € [t1,1; + T).
Then because there is a directed path from k, to j, this also leads to « = 0 and contradicts
a>0.

Therefore, at least one agent in Jy (¢1) is not in the set 7, (11 + T'). Repeating the aforementioned
arguments, we infer that there are at most two agents in the set J,(f; + (n — 2)T). From the
definition of 7, it is impossible for the set only contains one agent. Hence, J,(¢) = @ for any
t =t 4+ (n—1)T, which implies Ky (z) =@ foranyt = t; + (n — T. O
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Proof of Lemma 4.5

Take any x € (0, 14), and lett, = t; + (n —1)T + k. As t; varies on the interval [0, o0), the number
of switching times of o (¢) and the corresponding sequence of inter-agent graph on the time interval
(t + %, fh — g) vary.

Because of t; > O, there is an upper bound M = | (n — 1)T /74| + 1 on the number of switching
times during (f; + 5.1 — %). Take any ¢ € {0,1,2,..., M}, and suppose there are ¢ times of
switch during (t; + 5.7 — %). For a fixed ¢, because the number of all possible inter—agent graphs
is finite (equals m), the number of all possible sequences of inter-agent graph on (f; + 5,1 — 5
such that Lemma 4.4 hold is also finite, and we denote it as M. Then take any s € {1, 2 LM},
and denote the corresponding inter-agent graph sequence on (¢; + 7,72 — 5) as {Go, g}, L GE
Letdcs =a—V(E(t2)) and 8 ; = V(E(t1 + %)) — V(E (t2 — ))

When ¢ = 0, the inter-agent graph on (t; + 5.t — 5) isa ﬁxed graph, and &,
V(E (1)) is non-increasing, 8.5 = 8, ; > 0.

s > 0. Because

When ¢ # 0, let the (increasing) time sequence {74, T4,. - . -, T, } be switching time instances
on (t; + 5.t2 — %). Then the inter-agent graphs on [t; + 5, 74,), [Ta;s Tan)s -+ -+ [Tae 12 — 5) are
Go, Q’SI,... ¢, respectively. Let T = [ral,raz,...,raclT, D={teR 1 >n+5 1, <
ta = 5. Tappy — Ta; = Ta,l = 1,2,. — 1}, and D be the closure of D. From Lemma 4.2,
Ses = 8e5(T) is contlnuous in T on D and from Lemma 4.4, §. () > 0 for any T € D. Notice
that When Tqy =t +5(0rtg, = _x 5), the inter-agent graph on the time interval (t; + 5,1 — %)
becomes {G!,...,G¢} (or {G°, QSI, . ,gg—l}), and §; ;(7) > 0 might not hold. Because k < 74,

o (t) switches at most once on the interval [¢1,7; + 5] and [, — 5, 2], respectively. The four cases
of the switch are discussed as follows:

Case 1: no switch on both [t1,#; + ] and [t — 5, 12]. Because of the inter-agent graph sequence
on [r, 1) is still {G2,G!,.. QC}, es(™) = V(E (1)) — V(E(t2)) is continuous in T on D,
and 6} ((7) > 0 for any T € D. Because 8, ¢(t) attains a minimum on the compact set D,
8c,s = min 5 8} () > 0.

Case 2: one switch on [tl, rh+ ] and no switch on [t; — t2] This implies 74, = 1 + 74.
Let Dy ={treD:t =2t + rd} Because of the mter-agent graph sequence on [f1 + 3, 2)
is still {G9, Gy, ..., G¢}, 82 (z) = V(E(t + %)) — V(E(t2)) > 0 is continuous in 7 on D,
and 82 () >0 for any T € D,. Because 52, (7) attains a minimum on the compact set D5,

8c,s = min 5 Cs(r) > 0.

The analysis of the other two cases is similar to case 2 and is omitted here. And we reach the
conclusion that 8. s > 0.

Let 8¢ = minge(o,1,..,M},s€{1,2,...,M.} Sc,s- Then 8, > 0 and V(E (1)) < V(E(t2)) < a — 8y for
anyt = t; + (n — 1)T + t4. Because of all possible forms of the switching signal o (¢) on the time
interval [t1, t,] are considered, d, is independent of ;. O

APPENDIX C: PROOFS OF LEMMAS 5.3 AND 5.4

Proof of Lemma 5.3
Define the potential function for the whole multi-agent system as

¢(R)= > ¢ij(R). whereg;(R) = h(6;)).
@i,j)eE

Let Vg ¢ = {VRi90}iev' From Lemma 2.2, if /() # 0 and R € Qg , the gradient does not exist;
otherwise,

Vro=—Ri Y WOpky. i=12....n
JEN;

Hence, the trajectory R(¢) of the closed-loop system (31) moves along the negative gradient of ¢
whenever Vg )¢ exists. Then the solutions of (31) starting from any point in SO(3)" either converge
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to the set on which the gradient of ¢ is zero or converge to the set on which the gradient of ¢ does
not exist.

Next, we show that when /() > 0, any R € Qg 5 is not the local minima of the potential ¢ and
therefore, cannot be stable. Take any R = {R; }iey € Qg 7, and let R(e) = {R;(¢)}iey be a curve
in SO(3)" passing R at ¢ = 0, where R;(¢) = exp(ea;%)R; and the parameters u € S2, ; € R.
Then

Eij(R(e)) = R] (e)R;(e)RY; = exp (e(ej — o) (RT w)") Ei (R).

Take any (i, j) € £. Denote 6;;(¢) as the angle of E;;(R(¢)) and (G_i_; , I_ci‘,-) as the angle and axis of
E;;(R).If 6;; = &, then from Lemma 2.3,

0:: Ly _ -
(O] ”2(8) = sin |8(Ol]2 Ol,)| |uTR,-k,~j|.

Computing the left and right derivative of ¢;; (R (g)) with respect to € at ¢ = 0 yields
@i (R(07)) = I (m)(aj —ap)u” Rikij|,  ¢ij(ROY)) = —h' ()| (; — cri)u” Rikeij ).

Otherwise, éij < m, in which case ¢;;(R(¢)) is differentiable with respect to ¢ at ¢ = 0, and
therefore, ¢;; (R(07)) = ¢;; (R(0T)). Because R € Qg and h'(;r) > 0, there exist # and {; }iey
such that (R (07)) > @(R(0™)), implying R is not the local minima of ¢. O

Proof of Lemma 5.4

Take any equilibrium R* € M if h'(x) = Oorany R* € M\Qg » if /' (7) # 0. Next, we compute
the linearization of the system about R*. Notice that the linearization evolves in R3" because of
SO(3)" = 3n.

Let ¢ € R be a perturbation parameter, and suppose the initial state of (31) is a perturbation of
R* denoted by R® = {R} exp(ea;u;)}icv, where o; > 0 and u; € S2%. We use R(t; ¢) to denote
the trajectory of (31) starting form R® at ¢t = 0. Then denote w; (¢;¢) as the angular velocity of
agent i and 0;;(¢; €) as the angle of the error attitude E;; (R(¢;¢)) = RiT (t:e)R;(2; E)R?i. Notice
that when ¢ = 0, R® = R*. Hence, R;(-;0) = R} and ;(-;0) = 03 on [0, c0) for any i € V.

Let R;.(t) = (8R (t;€)/0¢€)|,—¢- Then R* ng € so(3) because of R;z € TR, (;00S0(3). Let

(R*TR,S) and we denote the state of the linearization systemas x = [xT, ... xT] e R3".
From (31), the trajectory R;(¢; ¢) satisfies the following differential equation:

n (911 (t:¢))

- 25in(0y (13 2) (RT (1:6)R;(1:6)RY; — RERT (136) Ri(1: ).

Ri(t;8) = R;(t; €) Z

From the assumption of R™, both sides of the previous equation are differentiable with respect to &
at ¢ = 0, and we obtain

RITRie =) (h"(65) — I (6};) cot 63) 0k
JEN;
h’(@;; A Ap*xT =~ px *T =
+ Z\:/ 2sin9;;-( (Rl] j) +(R x;)"E —XiEj; — Ej xi)-
JEN;

Let 0¢(1) = (36, (t;6)/08)|,_,. From 6;;(1; ) = arccos ((tr(RiT (t:6)RT (1:)R%,) — 1)/2) and

the identity (4), we obtain 6;;, = k*T(Ridjx‘,- — x;). Then combining the identities (3) and (9)
derives

g = Y [H(E;(R)RGx; — HE;(R) x;|. i=1.2,....n.

JEN;
Therefore, the linearization system about R* is x = J(R*)x. O
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