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ABSTRACT
In this paper, we consider a coordination problem for a class of heterogeneous nonlinearmulti-agent
systems with a prescribed input–output behaviour which was represented by another input-driven
system. In contrast to most existing multi-agent coordination results with an autonomous (virtual)
leader, this formulation takes possible control inputs of the leader into consideration. First, the coor-
dination was achieved by utilising a group of distributed observers based on conventional assump-
tions ofmodelmatching problem. Then, a fully distributed adaptive extensionwas proposedwithout
using the input of this input–output behaviour. An example was given to verify their effectiveness.

1. Introduction

In the past decades, there has been a large percentage of
multi-agent literature investigating on consensus-based
coordination problem due to its numerous applications
(seeOlfati-Saber &Murray, 2004; Ren&Beard, 2008, and
the references therein). Consensus means that a group of
agents reach an agreement on a physical quantity of inter-
est by interacting with their local neighbours. Usually, a
(virtual) leader is set up to define this quantity represent-
ing target trajectories or tasks. Including plenty of results
for integrator-typed agents (Bauso, Giarré, & Pesenti,
2009; Hong, Hu, &Gao, 2006; Ren & Beard, 2008), multi-
agent systems with general linear dynamics have also
been investigated even under variable topologies (Ni &
Cheng, 2010). Recently, distributed/cooperative output
regulation of multi-agent systems (Su & Huang, 2012;
Wang, Hong, Huang, & Jiang, 2010; Wang, Xu, & Hong,
2014) was also proposed as a general framework for
multi-agent coordination, which allows both reference
tracking and disturbances rejection.

In most existing results, the quantity to be consen-
sus on is assumed to be a constant or generated by an
autonomous leader/exosystem, which may be restrictive
or unpractical in some cases. On the one hand, the leader
might be a driven one especially when it is an uncooper-
ative target or contains unmodelled uncertainties. Simi-
lar problems have been investigated by some authors in
centralised or one-to-one cases (e.g. Saberi, Stoorvogel,
& Sannuti, 2001). On the other hand, the leader might be
designed and tuned by us according to some objectives
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or from a high-level process, which coincides with the
classical model matching problem (Benedetto & Isidori,
1986;Moore& Silverman, 1972). Also, a hierarchical con-
trol problem via abstraction was considered in Girard
and Pappas (2009), which was extended to a distributed
version in Tang and Hong (2013), where the abstraction
(virtual leader) is man-made with a tunable input in it.
Therefore, it is necessary to study multi-agent control
when the (virtual) leader contains driving inputs.

In fact, a coordinated tracking problem was investi-
gated inHong et al. (2006); when the agents’ dynamics are
integrators with inputs, an error bound was obtained by
some input-to-state stability-like arguments. This prob-
lem was further analysed in Cao and Ren (2012) and the
tracking error went to zero under a variable structure
control law, which was extended to linear cases (Li, Liu,
Ren, & Xie, 2013) by assuming that the leader and follow-
ers share the same dynamics. The case when the leader
has different dynamics from those of followers was later
considered in Tang (2014), where a disturbance decou-
pling condition was enforced to overcome the difficulties
caused by heterogeneous dynamics. However, the verifi-
cation of this geometry condition is nontrivial. Recently,
a distributed generalised output regulation problem was
formulated in Tang, Hong, and Wang (2015) for a class
of nonlinear agents and solved by an internal model-
based controller combined with adaptive rules to deal
with unknown-input leaders and possible (unbounded)
disturbances.

Inspired by those works, we aim to investigate the
coordination problem over a general class of hetero-
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geneous nonlinear multi-agent systems with prescribed
input–output behaviours described by an input-driven
leader, whose dynamics is totally different from those of
the other agents. The contribution of this work includes
the following:

� We extend the well-studied consensus problem
(Hong et al., 2006; Ren & Beard, 2008) to the case
when the quantity to be consensus on is generated
by an input-driven leader. While the leader here has
a dynamics different from those of the non-identical
followers, the results in Cao and Ren (2012) and
Li et al. (2013) can be strictly recovered. When the
leader has no driving inputs, these conclusions are
consistent with the existing consensus or output reg-
ulation results (e.g. Ren & Beard, 2008; Su &Huang,
2012).

� We extend the conventional model matching prob-
lem (Benedetto & Isidori, 1986) and/or generalised
output regulation formulation (refer to Ramos,
Celikovsky, & Kucera, 2004; Saberi et al., 2001) to
their cooperative version for multi-agent systems
with a driven leader. In contrast to sufficient con-
ditions and local results in Ramos et al. (2004) for
the single agent case, we provide a necessary condi-
tion and global control laws for a class of nonlinear
systems. Additionally, the agents here are of much
more general form and include many typical non-
linear systems, while only agents with unity relative
degree was considered in Tang et al. (2015).

The rest of this paper is organised as follows. The prob-
lem is formulated in Section 2. Then, our main results
are presented in Section 3, followed by an example in
Section 4. Finally, concluding remarks are presented in
Section 5.

2. Preliminaries and problem formulation

Before the main results, we provide some preliminaries
and then present the formulation of our problem.

2.1 Graph theory and nonsmooth analysis

Let R
n be the n-dimensional Euclidean space, R

n×m be
the set of n × m real matrices. diag{b1,… , bn} denotes
an n × n diagonal matrix with diagonal elements bi (i =
1,… , n); col(a1, . . . , an) = [aT1 , . . . , aTn ]T for any col-
umn vectors ai (i = 1,… , n).

A weighted directed graph (or weighted digraph) G =
(N , E,A) is defined as follows, whereN = {1, . . . , n} is
the set of nodes, E ⊂ N × N is the set of edges, andA ∈
R

n×n is a weighted adjacency matrix . (i, j) ∈ E denotes
an edge leaving from node i and entering node j. The

weighted adjacency matrix of this digraph G is described
by A = [aij]i, j = 1,… , n, where aii = 0 and aij � 0 (aij > 0 if
and only if there is an edge from agent j to agent i). A path
in graph G is an alternating sequence i1e1i2e2���ek − 1ik of
nodes il and edges em = (im, im+1) ∈ E for l= 1, 2,… , k.
If there exists a path from node i to node j, then node i
is said to be reachable from node j. The neighbour set of
agent i is defined as Ni = { j : ( j, i) ∈ E} for i = 1,… ,n.
A graph is said to be undirected if aij = aji (i, j= 1,… ,n).
The weighted Laplacian L = [li j] ∈ R

n×n of graph G is
defined as lii = �j � iaij and lij = −aij(j � i) (see Mesbahi
and Egerstedt (2010) for more details).

For the following nonsmooth analysis, we briefly
review some basics of nonsmooth analysis. Consider
the following differential equation with a discontinuous
right-hand side:

ẋ = f (x, t ) (1)

where f : R
m × R → R

m is measurable and essen-
tially locally bounded. A vector function x(·) is
called a Filippov solution of (1) on [t0, t1] if x(·)
is absolutely continuous on [t0, t1] and for almost
all, t � [t0, t1] satisfies the following differen-
tial inclusion: ẋ ∈ F[ f ](z, t ), where F[ f ](z, t ) =⋂

δ>0
⋂

μ(N̄)=0 c̄o( f (B(z, δ) − N̄), t ),
⋂

μ(N̄)=0 denotes
the intersection over all sets N̄ of Lebesgue measure zero,
c̄o(E) is the convex closure of set E, and B(z, δ) denotes
the open ball of radius δ centred at z.

Let V : R
m → R be a locally Lipschitz continuous

function. TheClarke’s generalised gradient ofV is defined
by ∂V (z) � co{limi→∞ ∇V (zi) : zi → z, zi /∈ �v

⋃
N̄},

where ‘co’ denotes the convex hull, �v is the set of
Lebesgue measure zero where �V does not exist, and
N̄ is an arbitrary set of zero measure. The set-valued
Lie derivative of V with respect to (1) is defined as
˙̃V �

⋂
ξ∈∂V ξTF[ f ](z, t ).

2.2 Problem formulation

Consider a group of heterogeneous nonlinear agents
transformable into the following form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

żi = A0
i zi + fi(xi),

ẋi1 = xi2,
...
ẋinxi = b∞

i ui + gi(zi, xi),
yi = xi1, i = 1, . . . ,N

(2)

where zi ∈ R
nzi , xi � col(xi1, . . . , xinxi ) ∈ R

nxi , and ui,
yi ∈ R. The matrix A0

i ∈ R
nzi ×nzi is Hurwitz and the high-

frequency gain b∞
i is assumed to be a positive constant.
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With no loss of generality, we take b∞
i = 1. The functions

fi, gi are infinitely differentiable.
System (2) is general enough to cover some widely

investigated systems, including integrators, single-input
single-output linear time-invariant systems and also
some well-known nonlinear systems, e.g. controlled
FitzHugh–Nagumo dynamics and controlled Van der Pol
oscillator (Chen & Huang, 2015).

We aim to drive all agents to match an input–output
behaviour described by

ẇ = Sw + dv(t ), yr = cTw. (3)

wherew ∈ R
nw
0 , yr ∈ R and v(t ) ∈ R is continuous satis-

fying |v(t)| � l for some positive constant l. By the term
‘matching’, wemean to construct a proper (dynamic) con-
troller such that the tracking error ei	yi − yr will asymp-
totically converge to zero for any v. Since we only focus on
input–output behaviour of (3) which is often man-made
according to some planning algorithms (e.g. by optimisa-
tion), it is assumed, without loss of generality, to be min-
imal and has no zero dynamics. Thus, under a suitable
coordinate transformation, we have

S =
[
0 Inw

0 −1

s00 s01, . . . , s0n−1

]
,

d = col(0, . . . , 0, dnw
0
), c = col(1, 0, . . . , 0).

In conventional model matching problem (Benedetto
& Isidori, 1986), assuming the availability of v and w
for all agents is reasonable and has been widely used,
since the prescribed behaviour is usually a mathematical
description of the performance specifications. However,
formulti-agent systems, we do not assume the availability
of w and v to all agents to save resources, and thus some
agents may have no access to those information, which
makes it much difficult to achieve collective behaviours.

To keep consistences, we denote system (3) as a vir-
tual leader in leader-following formulation (Hong et al.,
2006). Associated with these multi-agent systems, a
weighted digraph G can be defined with the nodes N =
{0, 1, ...,N} to describe the communication topology,
where node 0 represents the leader. If the control ui can
get access to the information of agent j, there is an edge
(j, i) in the graph G, i.e. aij > 0. Also note that a0i = 0
for i = 1,… , N, since the leader would not receive any
information from the followers. Denote the induced sub-
graph associated with all followers as Ḡ. A communica-
tion graph is said to be connected (Hong et al., 2006) if the
leader (node 0) is reachable from any other node of G and
the induced subgraph Ḡ of those followers is undirected.
Given a communication graph G, denote H ∈ R

N×N as

the submatrix of the Laplacian L by deleting its first row
and first column.

To achieve collective behaviours, the following
assumption is often made.

Assumption 2.1: The communication graph G is con-
nected.

Under this assumption, H is positive definite by
Lemma 3 in Hong et al. (2006). Denote its eigenvalues as
λ1 � λ2 � ��� � λN > 0.

In this study, wemainly consider a control law ui of the
form

ui = αi(xi, xci , x j, xcj, w) + βi(xi, xci , x j, xcj, w)v,

ẋci = ζi(xi, xci , x j, xcj, w) + γi(xi, xci , w)v, j ∈ Ni
(4)

where xci ∈ R
nci is a compensating variable for agent i and

the functions αi(·), β i(·), ζ i(·), γ i(·) are to be designed.
When nci = 0, it reduces to a static control law. Here,
the input v is some global information to all agents, and
this control law becomes a distributed one when v is not
exactly used.

The coordination problemofmulti-agent systemswith
a prescribed behaviour can be formulated as follows.
Given amulti-agent system composed of plant (2) and the
behaviour system (3), find an integer nci and proper func-
tions αi(·), β i(·), ζ i(·), γ i(·), such that, for any v ∈ R

and any initial condition (zi(0), xi(0), xci (0), w(0)) ∈
R

nzi × R
nxi × R

nci × R
nw
0 of the composite system (2)–(4),

the tracking error ei	yi − yr satisfies

lim
t→+∞ ei = 0, for any i ∈ {1, . . . , N}.

Remark 2.1: As having been mentioned, this problem
resembles somehow the classical nonlinearmodelmatch-
ing problem (Benedetto & Isidori, 1986; Isidori, 1995)
when N = 1. Another related problem is the so-called
generalised output regulation (Ramos et al., 2004; Saberi
et al., 2001); hence, this work can be taken as their
cooperative versions for nonlinear multi-agent systems;
while only local results were presented in Ramos et al.
(2004), we provide here non-local controllers for non-
linear agents to solve it in a cooperative way. When
v = 0 or dnw

0
= 0, this problem is exactly the exist-

ing consensus problem or the more general framework
– distributed/cooperative output regulation – on a ref-
erence output which is assumed to be generated by
an autonomous exosystem (Ren & Beard, 2008; Su &
Huang, 2012).

The following assumptions on agents’ dynamics are
made to solve this problem.
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Assumption2.2: For any i� {1,… ,N}, the relative degree
of agent i is no larger than that of the behaviour system (3),
i.e. nxi ≤ nw

i .

Assumption 2.3: For any i � {1,… , N} and concerned
zi, xi , it holds |gi(zi + �, xi)− gi(zi, xi)| � M||�|| for some
positive constant M.

Remark 2.2: The relative degree assumption (2.2) is nat-
ural and can be proved to be necessary. In fact, it is also
sufficient to solve our problem when N = 1 (see Isidori,
1995). Assumption 2.3 is known as the Lipschitz property.
When the concerned trajectories are contained in a com-
pact set, this condition can be removed from the smooth-
ness of gi(·).

3. Cooperativemodel matching design

In this section, we constructively give control laws to
solve the coordination problem of this multi-agent sys-
tem with prescribed behaviours. In conventional model
matching literature (Benedetto & Isidori, 1986; Isidori,
1995) and related generalised output regulation publi-
cations (Ramos et al., 2004; Saberi et al., 2001), the full
information of system (3) is usually assumed to be avail-
able. However, this is not the case in multi-agent systems.
While the availability of the control v is possible, the infor-
mation of wmight not be available for some agents.

To achieve collective behaviour, the following dis-
tributed observer, inspired by the distributed design of
Hong, Chen, and Bushnell (2008), is employed for agent i
to estimate w through the communication graph to facil-
itate our design.

η̇i = Sηi + dv + l0cTηv i, (5)

where ηv i = ∑N
j=0 ai j(ηi − η j), η0 = w, i = 1,… , N, and

l0 is a constant vector to be designed. Letting η̄i � ηi − w

and denoting η̄ = col(η̄1, . . . , η̄N ) gives

˙̄η = [IN ⊗ S + H ⊗ (l0cT)]η̄. (6)

The following lemma shows the effectiveness of these
distributed observers.
Lemma 3.1: Suppose P is a positive definite matrix satis-
fying STP + PS< 2PddTP and the communication graph is
connected. Taking l0 = −μdTP, there exists a constant μ*

such that when μ � μ*, system (6) is uniformly exponen-
tially stable in the sense of ||η̄|| ≤ c0e−λ0t for some positive
constants c0 and λ0.

The proof is similar to Theorem 3.1 in Ni and Cheng
(2010) and omitted to save space.

Remark 3.1: Note that a well-known sufficient condi-
tion for the solvability of the above linear matrix inequal-
ity is the stabilisability of (S, d); thus, this lemma holds
naturally for our multi-agent systems. Although η0 = w
appears in (5), yr = cTη0 will suffice this design. The case
when yr = w (i.e. the single-integrator case) has been
partly considered inHong et al. (2006) andRen andBeard
(2008), while here the leader (3) contains an external
input.

With the help of those distributed observers for the fol-
lowers, it is natural to replace w by its estimation ηi. Now,
we provide our first main theorem.

Theorem 3.1: Under Assumptions 2.1–2.3, the coordina-
tion problem of nonlinear multi-agent systems composed of
(2) with a prescribed behaviour described by system (3) is
solvable by a control law of the form

ui = −gi(ξi, xi) + xi(nxi +1),

ẋi(nxi +1) = xi(nxi +2),

...

ẋinw
0

=
nw
0∑

j=1

s0jxi j + dw
n0v + dw

n0

nw
0∑

j=1

k0j (xi j − ηi j),

ξ̇i = A0
i ξi + fi(xi),

η̇i = Sηi + dv + l0cTηv i (7)

where l0 are defined in Lemma 3.1 and k01, . . . , k0nw
0

are selected constants such that the polynomial snw
0 −

k0nw
0
snw

0 −1 − · · · − k01 is Hurwitz.

Proof: The proof will be split into two steps.

Step 1: We first check the estimation performance of ξ i
with respect to zi. In fact, it can be found zi-
subsystem is in an output feedback form Khalil
(2002) with xi as its output. Letting z̄i = ξi − zi
gives ˙̄zi = A0

i z̄i. Thus, ξ i will exponentially repro-
duce zi as times goes to infinity.

Step 2: We now check the evolution of x̄i = x̂i − w, where
x̂i = col(xi1, . . . , xinw

0
). By (2), (3), (5), and (7),

the composite system can be put into a compact
form as follows:

żi = A0
i zi + fi(xi),

˙̂xi = Sx̂i + dv + dKT(x̂i − ηi) + ḡi(z̄i, zi, xi)

η̇i = Sηi + dv + l0cTηv i

ξ̇i = A0
i ξi + fi(xi)

ẇ = Sw + dv
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Hence, one can obtain

˙̄xi = (S + dKT)x̄i − dKTη̄i + ḡi(z̄i, xi)

where ḡi(z̄i, zi, xi) is a column vector function
whose elements are zero except the nxi -th one. The
nxi -th element is gi(zi, xi) − gi(ξ i, xi).

Recalling that ξ i can exponentially reproduce zi and
combining Assumption 2.3 and Lemma 3.1, we apply
Lemmas 4.6 and 4.7 in Khalil (2002) and obtain that x̄i =
0 is an asymptotically stable equilibrium point of the x̄i-
subsystem. Thus, ei will converge to 0 as t → +
. Note
that these arguments hold for any i� {1,… ,N}, and thus
we complete the proof. �
Remark 3.2: Apparently, our problem with N = 1 is
actually the well-studied model matching (Benedetto &
Isidori, 1986) or generalised output regulation problem
(refer to Ramos et al., 2004; Saberi et al., 2001 ). Hence,
this formulation can be taken as their cooperative version
for multi-agent systems with a driven leader. In contrast
to sufficient conditions and local results in Ramos et al.
(2004) for the single-agent case, we provide global con-
trol laws for a class of nonlinear systems. Additionally, the
agents here are of much more general form and include
many typical nonlinear systems, while only agents with
unity relative degree was considered in Tang et al. (2015).

Since we merely have to match the input–output
behaviour of agent 0, it might not be necessary to repro-
duce the full state w of agent 0. In fact, a reduced-order
protocol will suffice our design as follows.

Theorem 3.2: Under Assumptions 2.1–2.3, the coordina-
tion problem of nonlinear multi-agent systems composed of
(2) with a prescribed behaviour described by system (3) is
solvable by a reduced-order control law of the form

ui = −gi(ξi, xi) + xi(nxi +1),

ẋi(nxi +1) = xi(nxi +2),

...

ẋinw
0

=
nw
0∑

j=1

s0jxi j + dw
n0v + dw

n0K
N∑
j=0

ai j(x̂i − x̂ j),

ξ̇i = A0
i ξi + fi(xi) (8)

where x̂0 = w, x̂i = col(xi1, . . . , xinw
0
), K = −γ dTP with

γ ≥ 1
λN
, and P is a positive definite matrix satisfying

STP + PS < 2PddTP.
Proof: The proof is similar with that of Theorem 3.1.
After some mathematical manipulations, one can derive

the composite system of agent i in a compact form as fol-
lows:

żi = A0
i zi + fi(xi),

˙̂xi = Sx̂i + dv + dK
N∑
j=0

ai j(x̂i − x̂ j) + ḡi(z̄i, zi, xi)

ξ̇i = A0
i ξi + fi(xi)

ẇ = Sw + dv

where ḡi(z̄i, zi, xi) has been defined in the proof of The-
orem 3.1. Letting x̄i = x̂i − w and z̄i = ξi − zi gives

˙̄z = Ā0z̄,
˙̄x = (IN ⊗ S + H ⊗ dK)x̄ + ḡ(z̄, z, x)

(9)

where Ā0 � block diag{Ā0
1, . . . , Ā0

N} and ḡ(z̄, z, x) is
determined by ḡi(·).

Since H is positive definite, there exists a unitary
matrix U such that 	UTHU = diag{λ1,… , λN}. Let
J	(UT � IN)(IN � S + H � dK)(U � IN), then, J =
blockdiag{J1,… , JN} with Ji	S + λidK. Apparently, JTi P +
PJi = STP + PST − 2γ λiPddTP < 0. Hence, Ā1 � IN ⊗
S + H ⊗ dK is Hurwitz. Recalling the stability of Ā0,
there exist two positive definite matrices P̄0 and P̄1

satisfying Ā0TP̄0 + P̄0Ā0 = −I∑
i n

z
i
and Ā1TP̄1 + P̄1Ā1 =

−I∑
i nxi .

We then take a quadratic Lyapunov candidate V̄ =
εz̄TP̄0z̄ + x̄TP̄1x̄, where ϵ> 0 is to be selected. Its deriva-
tive along the trajectory of the above error system is then

˙̄V = −εz̄Tz̄ − x̄Tx̄ + 2x̄TP̄1ḡ(z̄, z, x).

This combined with the Lipschitzness of ḡ(z̄, z, x)
(Assumption 2.3) in z̄ implies

˙̄V ≤ −εz̄Tz̄ − x̄Tx̄ + 2M||P̄1||||x̄||||z̄||
≤ −(ε − 2M2||P̄1||2)z̄Tz̄ − 1

2
x̄Tx̄.

Take ε > 2M2||P̄1||2 + 1
2 , then, it follows for some posi-

tive constant ε̄ that

˙̄V ≤ −1
2
(z̄Tz̄ + x̄Tx̄) ≤ −ε̄V̄ .

which implies the convergence of x̄, and thus the conclu-
sion is obtained. �
Remark 3.3: It can be found that, when v= 0, this prob-
lem reduces to the well-studied consensus problem, and
these conclusions are consistent with the existing consen-
sus or output regulation results (Hong et al., 2006; Ren
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& Beard, 2008) when the quantity to be consensus on is
generated by an autonomous leader. Additionally, while
the leader here has a dynamics different from those of the
non-identical followers, the results in Cao andRen (2012)
and Li et al. (2013) can be strictly recovered.
Remark 3.4: A similar problem has been considered in
Girard and Pappas (2009) and Tang and Hong (2013)
under the formulation of hierarchical control, where the
selected abstraction plays a similar role as prescribed
behaviours in our formulation. The main difference
between those two problems is that, we aim to achieve
exactly tracking control, while a tradeoff was made in
Tang and Hong (2013) that we may sacrifice some accu-
racy without reallocating the designed controllers. Nev-
ertheless, as the abstraction construction is still an open
problem, these theorems might provide us a theoretical
basis for abstraction selection to achieve better perfor-
mances.

4. Fully distributed adaptive extension

In the last section, the cooperative controllers depend on
the minimal eigenvalue λN of H and the leader’s input v,
which are actually global information. Usually, the multi-
agent network is of a large scale and the eigenvalue is hard
to compute. Also, the control input of (3) and even its
upper boundmight not be accessed by some agents. Thus,
distributed control laws may be more favourable using
only its local information.

Inspired by Li et al. (2013) and Tang (2014), we pro-
pose an adaptive extension with non-smooth analysis to
make proposed controllers fully distributed and achieve
the coordination with prescribed behaviours. For sim-
plicity, we only consider the reduced-order controller (8).
With some modifications, we propose

ui = −gi(ξi, xi) + xi(nxi +1),

ẋi(nxi +1) = xi(nxi +2),

...

ẋinw
0

=
nw
0∑

j=1

s0jxi j − dw
n0θid

TPx̂v i − θisgn[(dTPx̂v i)],

θ̇i = ||dTPx̂v i||22 + ||dTPx̂v i||1
ξ̇i = A0

i ξi + fi(xi) (10)

where x̂v i = ∑N
j=0 ai j(x̂i − x̂ j) and θ i is the dynamic gain

to be designed.
Note that the right-hand side of (8) is discontinuous,

and the stability of the closed-loop system will be anal-
ysed by using differential inclusions and nonsmooth anal-
ysis (Cortes, 2008). Since the sign function is measurable

and locally bounded, by Proposition 3 in Cortes (2008),
the Filippov solution of the closed-loop system exists. The
following theorem shows the solvability of our problem
by a fully distributed design.

Theorem 4.1: Under Assumptions 2.1–2.3, the coordina-
tion problem of nonlinear multi-agent systems composed
of (2) with a prescribed behaviour (3) is solvable by a dis-
tributed control of the form (10).

Proof: By some calculations, the composite system of
agent i can be put into a compact form.

żi = A0
i zi + fi(xi),

˙̂xi = Sx̂i − θiddTPx̂v i − θidsgn[(dTPx̂v i)] + ḡi(z̄i, zi, xi)

θ̇i = ||dTPx̂v i||22 + ||dTPx̂v i||1
ξ̇i = A0

i ξi + fi(xi)
ẇ = Sw + dv

Performing a coordinate transformation x̄i = x̂i − w and
z̄i = ξi − zi gives

˙̄zi = A0
i z̄i,

˙̄xi = Sx̄i − θiddTPx̄v i − d[θisgn[(dTPx̄v i)] + v]
+ ḡi(z̄i, zi, xi)

θ̇i = ||dTPx̂v i||22 + ||dTPx̂v i||1 (11)

where x̄v i = ∑N
j=0 ai j(x̄i − x̄ j) and x̄0 = 0. Also note

that

˙̄z = Ā0z̄,
˙̄x = (IN ⊗ S − EH ⊗ ddTP)x̄ − (E ⊗ d)sgn[(H ⊗ dTP)x̄]

− (IN ⊗ d)v + ḡ(z̄, z, x)

where Ā0, ḡ(z̄, z, x) are defined as in Equation (9), E =
diag(θ1,… , θN), and sgn[(H ⊗ dTP)x̄] is defined ele-
mentwise.

Since the matrix Ā0 is Hurwitz by assumptions, there
exists a positive definite matrix Q such that ĀT

0Q +
QĀT

0 = −Inz , where nz = ∑
i n

z
i . To prove this theorem,

we consider a Lyapunov candidate as follows:

V = x̄T(H ⊗ P)x̄ + κ z̄TQz̄ +
N∑
i=1

(θi − �)2 (12)

where κ and � are positive constants to be designed.
Its set-valued Lie derivative along the trajectory of the
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closed-loop system under controller (10) is

˙̃V � F
[
x̄T(H ⊗ P) ˙̄x − κ z̄Tz̄ + 2

N∑
i=1

(θi − �)θ̇i

]

= 2x̄T(H ⊗ P)(IN ⊗ S − EH ⊗ ddTP)x̄

− 2x̄T(H ⊗ P)(E ⊗ d)sgn[(H ⊗ dTP)x̄]

− 2x̄T(H ⊗ P)(IN ⊗ d)v + 2x̄T(H ⊗ P)ḡ(z̄, z, x)]

− κ z̄Tz̄ + 2
N∑
i=1

(θi − �)θ̇i

= �1 + �2 + 2M̄||x̄||2||z||2 − κ z̄Tz̄ + 2
N∑
i=1

(θi − �)θ̇i

where �1 � x̄T[H ⊗ (PS + STP)]x̄ − 2x̄T(HEH ⊗ PddT

P)x̄, �2 � −2x̄T(HE ⊗ Pd)sgn[(H ⊗ dTP)x̄] − 2x̄T

(H ⊗ Pd)v , and M̄ is a constant greater than
M||H � P||2. Here, we use the fact that F[f](x) =
f(x) if f(x) is continuous (Cortes, 2008) since
2x̄T(HE ⊗ Pd)sgn[(H ⊗ dTP)x̄] = ∑N

i=1 θi||dTPx̄v i||1
and �2 is continuous.

Let ξ = (UT ⊗ IN )x̄ and x̂v i = ∑N
j=0 ai j(x̂i − x̂ j),

whereU is defined in Theorem 3.2, then x̂v = (H ⊗ IN )x̄.
One can obtain

�1 = ξT[ ⊗ (PS + STP)]ξ − 2�ξT(2 ⊗ PddTP)ξ

− 2x̄T[H(E − �IN )H ⊗ PddTP]x̄

=
∑
i

λiξ
T
i [PS + STP − 2�λiPddTP)ξi

− 2
∑
i

(θi − �)x̂Tv iPdd
TPx̂v i

Let� be large enough such that�λi > 1, then there exists
a positive constant ϵ such that

�1 ≤ −εx̄Tx̄ − 2
∑
i

(θi − �)x̂Tv iPdd
TPx̂v i (13)

For the second term, we have

�2 = −2
∑
i

�||dTPx̂vi||1 − 2x̄T(H ⊗ Pd)v

− 2x̄T[H(E − �IN ) ⊗ Pd]sgn[(H ⊗ dTP)x̄]

≤ −2
∑
i

(� − l)||dTPx̂vi||1 − 2
∑
i

(θi − �)||dTPx̂vi||1
(14)

Note that by Young’s inequality, we have

2M̄||x̄||2||z||2 ≤ ε

2
||x̄||2 + 2M̄2

ε
||z||2 (15)

By letting � = max{l, 1
λN

} and κ = 2M̄2

ε
+ 1 and com-

bining (13)–(15), we have

V̇ ≤ −ε

2
x̄Tx̄ − 2

∑
i

(� − l)||dTPx̂v i||1 − z̄Tz̄

+ 2
N∑
i=1

(θi − �)(θ̇i − �i)

≤ −ε

2
x̄Tx̄ − z̄Tz̄ �W (x̄, z̄) (16)

where �i = ||dTPx̂v i||22 + ||dTPx̂v i||1.
Apparently, the trajectory of the closed-loop system

is bounded and thus the derivatives of x̄ and z̄ are also
bounded from (11). Hence, W is uniformly continuous
with respect to time t. By integrating the both sides of
(16), we have

∫ ∞

t0
W (x̄(t ), z̄(t ))dt ≤ V (t0).

Recalling Barbalat’s lemma (Khalil, 2002), we have
W (x̄, z̄) → 0 when t → 
, and hence x̄ converges to
zero when t goes to infinity, while θ i converges to some
finite value. �
Remark 4.1: Although similar design has been used in
Cao and Ren (2012) and Li et al. (2013), the agents con-
sidered here are of much general heterogeneous dynam-
ics and include existing results as its special cases. Fur-
thermore, it can also be proved that the disturbance
decoupling condition used in Tang (2014) is sufficient for
Assumption 2.2, while the latter one is checkable.
Remark 4.2: Since the discontinuous signum func-
tion is employed in this fully distributed design, the
unfavourable chattering might rise and result in some
instability of this control law. We thus propose one of its
continuous approximation as follows:

u = −gi(ξi, xi) + xi(nxi +1),

ẋi(nxi +1) = xi(nxi +2),

...

ẋinw
0

=
nw
0∑

j=1

s0jxi j − dw
n0θid

TPx̂v i − θisatε (dTPx̂v i),

θ̇i = ||dTPx̂v i||22 + ||dTPx̂v i||1 − σθi,

ξ̇i = A0
i ξi + fi(xi) (17)

0 1 2 3

Figure . The communication graph.
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Figure . The performance of the controller (): (a) for v=  and (b) for v= −w.

where satε (x) = {x/ε, if |x| ≤ ε;
sgn(x/ε), if |x| > ε , and σ , ε > 0 are tun-

able parameters. It can be verified following a similar
proof as that in Jiang and Hill (1999) and Tang et al.
(2015) that this control law will eventually drive all track-
ing errors into a bounded set. Furthermore, the bound
can be sufficiently small by tuning σ and ε according to
practical control goals.

5. Examples

We give an example to illustrate the effectiveness of our
design in previous sections.

Consider three nonlinear agents including a controlled
damping oscillator, a controlled FitzHugh–Nagumo
dynamics and a controlled Van der Pol oscillator (Chen
& Huang, 2015) as follows:

Agent 1 :

⎧⎨
⎩
ẋ11 = x12
ẋ12 = �1 + u1
y1 = x11

Agent 2 :

⎧⎨
⎩
ż21 = −c2z21 + b2x21
ẋ21 = �2 + u2
y2 = x21, c2 > 0

Agent 3 :

⎧⎨
⎩
ẋ31 = x32
ẋ32 = �3 + u3
y3 = x31.

where �1 = −x11 − x12, �2 = x21(a2 − x21)(x21 − 1)
− z21, and �3 = −x31 + a3(1 − x231)x32. The prescribed
input–output behaviour (agent 0) is ẇ1 = w2, ẇ2 =
v, yr = w1.

It can be verified that the communication topology in
Figure 1 is connected and Assumptions 1 and 2 are also
satisfied. We employ the distributed control (10) to solve
this problem. Take a2 = 1, b2 = 1, c2 = 1, a3 = 1 and

the initial value of each state variable randomly generated
during [−3, 3]. First, we let v = 0 to generate a ramping
signal, and then take v = −w1 to generate a sinusoidal
signal.While the controller is fixed, the simulation results
are depicted in Figure 2.

6. Conclusions

A coordination problem with prescribed behaviours for
a class of nonlinear heterogeneous multi-agent systems
was formulated as a distributed extension of conventional
model matching problem. Based on some conventional
assumptions, two control laws and a fully distributed
extension were given to solve this problem. Future works
include nonlinear MIMO multi-agent systems and with
more general graphs.
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