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Abstract This paper considers a robust consensus tracking problem of heterogeneous multi-agent

systems with time-varying interconnection topologies. Based on common Lyapunov function and inter-

nal model techniques, both state and output feedback control laws are derived to solve this problem.

The proposed design is robust by admitting some parameter uncertainties in the multi-agent system.
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1 Introduction

The past decade has witnessed a rapid development in the field of multi-agent system and
many fruitful results have been obtained. As one important topic, the consensus problem is
actively studied due to its numerous applications such as cooperative control of unmanned aerial
vehicles, communication among sensor networks, and formation of mobile robots (see [1, 2] and
the references therein). Consensus means that a group of agents reaches an agreement on
a physical quantity of interest by interacting with their local neighbors. Roughly speaking,
existing consensus problems can be categorized into two types: Consensus without a leader (i.e.,
leaderless consensus or synchronization) and consensus with a leader. The case of consensus
with a leader is also called leader-following consensus or consensus tracking.

The consensus tracking problem of multi-agent systems has been studied for many years.
This problem with agents in the form of single-integrators or double-integrators has been widely
investigated (see [2–4]). In [5], the authors proposed a distributed observer-based control law
using local information to track an integrator-type leader. Later, this work has been extended
to multi-agent systems with a general linear dynamics (see [6, 7]) under switching topologies.
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Other extensions including consensus tracking with an unknown-input driven leader or a de-
signed abstracted system have been studied in [8, 9].

Recently, a general framework based on output regulation theory (see [10]) has been de-
veloped for multi-agent consensus (see [11, 12]), where distributed control could achieve both
asymptotic tracking and disturbance rejection. For example, as an extension to the results in [6],
a cooperative output regulation problem of heterogeneous multi-agent systems was formulated
in [13] and solved by devising a distributed observer, where the exosystem can be viewed as the
leader in the leader-following formulation. However, these results were obtained with a fixed
topology. A similar problem but under a class of switching topologies was considered in [14].
Both dynamic state feedback and measurement output feedback control laws were proposed
by using the full information of the exosystem which may be undesirable sometimes. Without
requiring exactly known system matrices, many robust results were further obtained which can
handle parameter uncertainties in the multi-agent system. For example, the authors in [11]
proposed a robust control law based on internal model design with a no-loop graph which ad-
mits parameter uncertainties in the system matrices. Later, the no-loop graph assumption was
removed in [12]. These results were mainly achieved with fixed topology. Very few results were
obtained on robust output regulation with switching topologies, except that a control design
was investigated in [15] based on canonical internal models to deal with small parameter un-
certainties. However, this method was only applicable to the square follower system and led to
an output feedback control law.

(i) We extend the conventional leader-following consensus (e.g., [2, 5]) to general linear multi-
agent systems with parameter uncertainties. When there are no such uncertainties, these results
are consistent with existing consensus and distributed output regulation results, e.g., [5, 13].

(ii) We consider the distributed/cooperative robust output regulation problem under switch-
ing topologies, and robust control laws are proposed for heterogeneous multi-agent systems,
while many existing regulation results were derived for only homogeneous multi-agent systems
(see [12]) or for fixed graph cases (see [11, 13]).

Moreover, both output and state feedback control laws are proposed to solve the the robust
output regulation problem considered in [15], and these control laws are also applicable to the
follower system whose inputs have different dimensions with its outputs.

The rest of this paper is organized as follows. In Section 2, the problem formulation is given.
Main results are presented in Section 3, where two types of robust consensus control laws are
proposed. Finally, simulations and our concluding remarks are presented at the end.

Notations: Let R
n be the n-dimensional Euclidean space, R

n×m be the set of n × m real
matrices, 0n×m represents an n × m zero matrix. 1n represents a column vector of n entries
equal to 1. diag{b1, b2, · · ·, bn} denotes an n×n diagonal matrix with diagonal elements bi (i =
1, 2, · · ·, n); col(a1, a2, · · ·, an) = [aT

1 , aT
2 , · · ·, aT

n ]T for any column vectors ai (i = 1, 2, · · ·, n),
vec(X) = col(X1, X2, · · · , Xn) with Xi as the i-th column of a n-column matrix X . A weighted
directed graph (or weighted digraph) G = (N , E ,A) is defined as follows, where N = {1, 2, · · ·, n}
is the set of nodes, E ⊂ N × N is the set of edges, and A ∈ R

n×n is a weighted adjacency
matrix ([18]). (i, j) ∈ E denotes an edge leaving from node i and entering node j. The weighted
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adjacency matrix of this digraph G is described by A = [aij ]i, j=1,2,··· ,n, where aii = 0 and
aij ≥ 0 (aij > 0 if and only if there is an edge from agent j to agent i). A path in graph
G is an alternating sequence i1e1i2e2· · ·ek−1ik of nodes il and edges em = (im, im+1) ∈ E for
l = 1, 2, · · ·, k. If there exists a path from node i to node j then node i is said to be reachable
from node j. The neighbor set of agent i is defined as Ni = {j : (j, i) ∈ E} for i = 1, 2, · · · , n.
A graph is said to be undirected if aij = aji (i, j = 1, 2, · · ·, n). The weighted Laplacian
L = [lij ] ∈ R

n×n of graph G is defined as lii =
∑

j �=i aij and lij = −aij(j �= i).

2 Problem Formulation

Consider a group of N + 1 agents, and N of them are followers described by

ẋi = (Ai + ΔAi)xi + (Bi + ΔBi)ui,

yi = (Ci + ΔCi)xi + (Di + ΔDi)ui, i = 1, 2, · · · , N,
(1)

where xi ∈ R
ni , ui ∈ R

pi , yi ∈ R
q are the state, input, and output of agent i, respectively.

Ai ∈ R
ni×ni , Bi ∈ R

ni×pi , Ci ∈ R
q×ni ,Di ∈ R

q×pi represent the nominal part of the plant,
while ΔAi, ΔBi, ΔCi, ΔDi represent the uncertain part. Without loss of generality, assume the
triple (Ci, Ai, Bi) is controllable and observable.

Let wi = vec
([

ΔAi ΔBi

ΔCi ΔDi

])
be the uncertain vector for agent i and denote Ai(w) = Ai +ΔAi,

Bi(w) = Bi + ΔBi, Ci(w) = Ci + ΔCi, Di(w) = Di + ΔDi, w = col(w1, w2, · · · , wN ).
The leader (node 0) is as

v̇ = Sv, y0 = −Fv, (2)

where S ∈ R
m×m,F ∈ R

q×m, and (F, S) is observable.
Associated with this multi-agent system, a dynamic digraph G can be defined with the nodes

N = {0, 1, · · · , N} to describe the communication topology, which may be switching. If the
control ui can get access to the information of agent j at time instant t, there is an arc (j, i)
in the graph G, i.e., aij > 0. Also note that a0i = 0 for i = 1, 2, · · · , N since the leader won’t
receive any information from the followers. Denote the induced subgraph associated with all
followers as G. The associated Laplacian of this digraph can be partitioned as

L =

⎡

⎣
0 01×N

L̂ H

⎤

⎦ ,

where L̂ ∈ R
N×1 and H ∈ R

N×N .
To achieve the coordination of the multi-agent system, node 0 in G should be globally

reachable, and therefore at least one agent in each component of G is connected to the leader.
Otherwise, the coordination between the agents and the leader cannot be achieved. We say a
communication graph is connected if the leader (node 0) is reachable from any other node of
G and the induced subgraph G is undirected. By Lemma 3 in [5], H is positive definite if the
communication graph is connected. Denote its eigenvalues as λ1 ≥ λ2 ≥ · · · ≥ λN > 0.
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In multi-agent systems, the connectivity graph G may be time-varying. To describe the vari-
able interconnection topology, we denote all possible communication graphs as G1,G2, · · · ,Gκ,
P = {1, 2, · · · , κ}, and define a switching signal σ : [0,∞) → P , which is piece-wise constant
defined on an infinite sequence of nonempty, bounded, and continuous time-intervals. Assume
ti+1 − ti ≥ τ0, ∀i, where ti is the i-th switching instant and t0 = 0. Here τ0 is often called
the dwell-time. Therefore, Ni and the connection weight aij (i, j = 0, 1, · · · , N) are time-
varying. Moreover, the Laplacian Lσ(t) and the matrix Hσ(t) associated with the switching
interconnection graph Gσ(t) are also time-varying (switched at ti, i = 0, 1, · · · ), though they are
time-invariant in each interval [ti, ti+1).

The following assumption on the communication graph is made.
Assumption 2.1 The graph is switching among a group of connected graphs with the

leader as its root.
The robust consensus tracking problem of this heterogeneous multi-agent system can be

formulated as follows. Given the multi-agent system composed of the follower (1), the leader
(2) and its corresponding communication graph Gσ(t), find a robust control law such that, there
exists an open neighborhood W of w = 0, for any initial condition xi(0) ∈ R

ni , v(0) ∈ R
m,

w ∈ W , the consensus tracking goal is achieved, i.e., ei = yi − y0 → 0 for i = 1, 2, · · · , N as
t → ∞.

Note that, the system of agents considered are all with general linear models and can be seen
as extensions to the well-studied consensus tracking problem in existing results for integrator-
type agents (see [1, 2, 5]).

Another assumption is needed to solve this robust consensus tracking problem.
Assumption 2.2 Let λ be any eigenvalue of S, it holds

rank

⎡

⎣
Ai − λI Bi

Ci Di

⎤

⎦ = ni + q. (3)

Remark 2.1 This condition is often called the transmission zero condition (see [19]) and
is a key ingredient to solve the robust output regulation problem in centralized cases.

Remark 2.2 When all agents have the same nominal system matrices, i.e., Ai = A, Bi =
B, Ci = C, Di = D, a similar result have obtained in [12] under a fixed topology. Note that
the interconnection in our formulation allows switching topologies, which renders this problem
more challenging.

3 Main Results

In this section, we give a robust design scheme based on internal model techniques.
Unlike in decentralized cases (see [16]), we do not assume the availability of y0 to all agents

in our problem. An agent can get access to y0 unless there is an arc from the leader to this
agent. Since not all followers can directly get access to the leader’s information, we first build
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a distributed observer for each agent as follows:

η̇i = Sηi − L0Fηvi, (4)

where ηvi =
∑N

j=0 aij(t)(ηi − ηj), η0 = v and L0 is a gain matrix to be selected.
To establish the performance of this distributed observer, the following lemma will be used.

Lemma 3.1 Let P be a positive definite symmetric solution of the Lyapunov inequality

PS + STP − 2FTF < 0. (5)

Take L0 = μP−1FT, then under Assumption 2.1, there exist positive constants μ∗ and c, such
that, when μ ≥ μ∗, it holds

(S − λp
i L0F )TP + P (S − λp

i L0F ) ≤ −cP, (6)

where λp
i > 0 for i = 1, 2, · · · , N are the eigenvalues of Hp (p ∈ P).

Proof Note that there are only finite graphs satisfying Assumption 2.1, the minimum eigen-
value of Hp for all p is well-defined and denoted as λ > 0. Taking μ∗ = max{ 1

λ
, 1}, we obtain

(S − λp
i L0F )TP + P (S − λp

i L0F )

=STP + PS − 2μλp
i F

TF

=STP + PS − 2FTF − 2(μλp
i − 1)FTF

≤STP + PS − 2FTF.

Since STP +PS−2FTF is negative definite, there exists a sufficiently small constant c satisfying
the inequality (6).

The next lemma shows the convergence of (4) and thus guarantees that each agent can
asymptotically get the state information of the leader.

Lemma 3.2 Under Assumption 2.1, there exists a constant matrix L0, such that, ηi will
exponentially converge to v as t goes to infinity, in the sense of ||ηi − v|| ≤ c0e−λ0t for some
constants c0 and λ0.

Proof Let η = col(η1, η2, · · · , ηN ) and η = η − 1 ⊗ v. After some mathematical manipula-
tions, it follows

η̇ = (IN ⊗ S − Hσ(t) ⊗ L0F )η.

Note that Hσ(t) is constant and positive definite under Assumption 2.1 during each interval. We
first consider this problem in an interval [ti, ti+1). Assume σ(t) = p for t ∈ [ti, ti+1), there exists
a unitary matrix Up such that Λp � UT

p HpUp = diag{λp
1, λ

p
2, · · · , λp

N}. Let η̂ = (UT
p ⊗ IN )η,

then,

˙̂η = (IN ⊗ S − Λp ⊗ L0F )η̂,
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that is, ˙̂ηi = (S − λp
i L0F )η̂i for i = 1, 2, · · · , N . By selecting L0 as that in Lemma 3.1 and

letting Vηi = η̂T
i P η̂i, we can derive V̇ηi ≤ −cVηi . Recalling the dwell-time assumption, this

inequality holds for all t. Let Vη(t) =
∑N

i=1 Vηi(t), it follows V̇η ≤ −cVη. Note that ηTη = η̂Tη̂,
then

||ηi − v||2 ≤ ηTη ≤ λmin(P )−1Vη(t) ≤ λmin(P )−1Vη(0)e−ct.

The conclusion follows readily.

Remark 3.3 It has been proved that, a sufficient and necessary condition for the linear
matrix inequality (5) is the detectability of (F, S) (see [17]). Hence, the observability of the
leader system is sufficient to build an exponentially convergent distributed observer of the form
(4) under Assumption 2.1.

Remark 3.4 A similar result has been obtained in [13] but under a fixed topology. Exten-
sions under switching topologies were also obtained in [14] but assuming S has no eigenvalues
with positive real parts. Lemma 3.2 allows that S can have eigenvalues with positive real parts
and hence includes unbounded references for this multi-agent system under switching topolo-
gies. Moreover, while full-information of the leader was used in [13, 14], i.e., F = Iq, we only
needs the referenced output y0 here and avoid the cases when the availability of the leader’s
full-information is not desirable.

Next, we first consider a dynamic state feedback control to achieve the robust consensus
tracking goal and then propose an output feedback design.

Let α(s) = spm +α1s
pm−1+· · ·+αpm−1s+αpm be the minimal polynomial of S, G1 = Iq⊗β,

and G2 = Iq ⊗ γ with

β =

⎡

⎣
0 Ipm−1

−αpm −αpm−1 · · ·α1

⎤

⎦ , γ = col(0, 0, · · · , 0
︸ ︷︷ ︸

pm−1

, 1).

Evidently, the pair (G1, G2) is controllable. It is the so-called q-copy of S (see [19]). By
incorporating its q-copy of the leader, we propose a state feedback control law of the form

ui = K1ixi + K2iξi,

ξ̇i = G1ξi + G2(yi + Fηi),

η̇i = Sηi − L0Fηvi,

(7)

where G1, G2 are as defined and K1i, K2i to be determined later.
By a similar proof of Lemma 1.23 in [19], under Assumption 2.2, the pair

⎛

⎝

⎡

⎣
Ai 0ni×qpm

G2Ci G1

⎤

⎦ ,

⎡

⎣
Bi

G2Di

⎤

⎦

⎞

⎠ (8)

is controllable for i = 1, 2, · · · , N . Hence, there exist constant matrices K1i and K2i with proper
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dimensions such that the matrix

Aci �

⎡

⎣
Ai + BiK1i BiK2i

G2(Ci + DiK1i) G1 + G2DiK2i

⎤

⎦ (9)

is Hurwitz.
The regulator equations play a key role in the output regulation problem (see [19]), and the

following lemma establishes its solvability for the coordination design. Its proof is similar with
that of Lemma 1.27 in [19] and thus omitted.

Lemma 3.5 There exists a neighborhood Wi of wi = 0, such that for any wi ∈ Wi, the
following equations:

Xi(w)S = Ai(w)Xi(w) + Bi(w)Ui(w), (10)

Zi(w)S = G1Zi(w) (11)

have a solution (Xi(w), Zi(w)) with Ui(w) = K1iXi(w) + K2iZi(w). Moreover, Xi(w) and
Zi(w) satisfy

Ci(w)Xi(w) + Di(w)Ui(w) + F = 0.

It is time to give our first main result.

Theorem 3.6 Under Assumptions 2.1 and 2.2, the robust consensus tracking problem of
this multi-agent system can be solved by the control law (7) with selected matrices K1i, K2i,
i = 1, 2, · · · , N , and L0.

Proof Under Assumption 2.2 and by Lemma 3.5, for any i, there exists a neighborhood Wi

of wi = 0, such that for any wi ∈ Wi, there exist two matrices Xi(w) and Zi(w) satisfying

Xi(w)S = Ai(w)Xi(w) + Bi(w)Ui(w),

Zi(w)S = G1Zi(w),

where Ui(w) = K1iXi(w) + K2iZi(w). Taking W as the direct product of all Wi (i.e., W =
W1 × W2 × · · · × WN ) and performing a transformation xi = xi − Xi(w)v, ξi = ξi − Zi(w)v
gives

ẋi = (Ai(w) + Bi(w)K1i)xi + Bi(w)K2iξi,

ξ̇i = G2(Ci(w) + Di(w)K1i)xi + (G1 + G2Di(w)K2i)ξi − G2ηi,

ei = (Ci(w) + Di(w)K1i)xi + Di(w)K2iξi.

Denote xci = col(xi, ξi) and rewrite these equations in a compact form:

ẋci = Aci(w)xci + Eci(w)ηi,

ei = Cci(w)xci,

where Eci(w) = col(0ni×nz , G2F ), Cci(w) = [Ci(w) + Di(w)K1i, Di(w)K2i] are constant ma-
trices with uncertain parameters. By the exponential stability of Aci(w) and Lemma 3.2, we
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apply Lemmas 4.6 and 4.7 in [20] and obtain the convergence of xci. As a result, the proof is
completed.

Remark 3.7 It can be found that if y0 = v (i.e., F = −Iq), it means that the state variable
v of the leader can be directly obtained when it is reachable from some other agent. This special
case has been partly considered in [13, 14]. We extend the control law in [13, 14] by only using
the measurement output of the leader. Similar control laws were proposed in [5, 6] when the
followers are all integrators, while here we consider more general cases in this formulation.

In some circumstances, the follower may not have access to its own state and only its output
measurement is available. The following theorem shows how the robust consensus tracking
problem can be solved by an output feedback control law.

Theorem 3.8 Under Assumptions 2.1 and 2.2, there exist proper matrices K1i, K2i, K3i,
and L0, such that the robust consensus tracking problem of this multi-agent system is solved by
the following control law:

ui = K1iζi + K2iξi, ζ̇i = Aiζi + Biui + K3i(yi − Ciζi − Diui),

ξ̇i = G1ξi + G2(yi + Fηi), η̇i = Sηi − L0Fηvi.
(12)

Proof The proof is similar with that of Theorem 3.6. Since the pair (8) is controllable,
we still take K1i and K2i as Theorem 3.6. Note that (Ci, Ai) is observable, there exists an
K3i such that Ai − K3iCi is Hurwitz. Denote x̂ci = col(xi, ζi, ξi) and consider the closed-loop
system of agent i in a compact form as

˙̂xci = Aci(w)x̂ci + Eci(w)ηi,

where Eci(w) = col(0ni×m, 0ni×m, G2F ), and

Aci(w) =

⎡

⎢
⎢
⎣

Ai(w) Bi(w)K1i Bi(w)K2i

K3iCi(w) Ξ1i Ξ2i

G2Ci(w) G2Di(w)K1i G1 + G2Di(w)K2i

⎤

⎥
⎥
⎦ ,

with Ξ1i � Ai−K3iCi(w)+BiK1i+K3i(Di(w)−D)K1i and Ξ2i � BiK2i+K3i(Di(w)−D)K2i.
The nominal system matrix Aci(0) is

Aci(0) =

⎡

⎢
⎢
⎣

Ai BiK1i BiK2i

K3iCi Ai − K3iCi + BiK1i BiK2i

G2Ci G2DiK1i G1 + G2DiK2i

⎤

⎥
⎥
⎦ .

Let

Ti =

⎡

⎢
⎢
⎣

Ini 0 0

−Ini Ini 0

0 0 Inz

⎤

⎥
⎥
⎦ .
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Then,

Âci(0) � TiAciT
−1
i

=

⎡

⎢
⎢
⎣

Ai + BiK1i BiK1i BiK2i

0 Ai − K3iCi 0

G2(Ci + DiK1i) G2DiK1i G1 + G2DiK2i

⎤

⎥
⎥
⎦ .

Recalling the selection of K1i, K2i, K3i, Âci(0) and hence Aci is Hurwitz. There exists a
neighborhood W of w = 0, such that Aci(w) is also Hurwitz. Following the same procedure as
Lemma 3.5, there exist unique matrices Xi(w), Y i(w), and Zi(w) satisfying

X i(w)S = Ai(w)X i(w) + Bi(w)U i(w),

Y i(w)S = Ai(w)X i(w) + Bi(w)U i(w) + K3iCi(w)(X i(w) − Y i(w)),

Zi(w)S = G1Zi(w) + G2[Ci(w)X i(w) + Di(w)U i(w) + F ],

where U i(w) = K1iY i(w) + K2iZi(w). From the uniqueness, X i(w) = Y i(w). By the similar
techniques of Lemma 1.27 in [19], we can also obtain Ci(w)X i(w) + Di(w)U i(w) + F = 0.

Performing a transformation xi = xi − Xi(w)v, ζi = ζi − Y i(w)v, ξi = ξi − Zi(w)v and
denoting xci = col(xi, ζi, ξi) gives

ẋci = Aci(w)xci + Eci(w)ηi, ei = Cci(w)xci,

where Cci(w) = [Ci(w), Di(w)K1i, Di(w)K2i] are constant matrices with uncertainties. By
the stability of Aci(w) and Lemma 3.2, we apply Lemmas 4.6 and 4.7 in [20] and obtain the
convergence of xci. As a result, the proof is completed.

Remark 3.9 This problem has been partially investigated in [14] under switching topolo-
gies. However, the constructed controllers heavily relied on the exact known system matrices
and hence can’t admit uncertainties. The internal model-based control law here facilitates us
to allow small parameter uncertainties and thus obtain a robust control law. Moreover, without
restricting the eigenvalues of S are in the closed left half-plane, the common Lyapunov function
technique helps us handle the switching topologies even the references may be unbounded.

Remark 3.10 Another relevant paper is [15], in which a robust output regulation problem
of linear multi-agent systems was studied by a so-called canonical internal model. The main
differences between our work and that of [15] are at least two-fold. First, the method proposed
in [15] only applies to the case when the outputs have the same dimension with its inputs.
Second, only an output feedback control law was derived in [15], while here both state feedback
and output feedback control laws are proposed. Moreover, since the out feedback control law
in [15] needs to estimate the state of the internal model, its dimension may be much higher than
the control (12) when q > 1.
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4 Simulations

For illustrations, we present an example and consider three followers with following system
matrices

A1 = 1 + ε1, B1 = 1 + ε1, C1 = 1 + ε1, D1 = 1 + ε1,

A2 =

⎡

⎣
0 1 + ε2

−1 + ε2 0

⎤

⎦ , B2 = col(0, 1 + ε2), C2 = [1 + ε2, 0], D2 = ε2,

A3 =

⎡

⎢
⎢
⎣

ε3 1 0

−1 + ε3 0 1

2 ε3 1

⎤

⎥
⎥
⎦ , B3 = col(0, 1, 1 + ε1), C3 = [0, 1, 0], D3 = 1.

The leader is described by

v̇1 = v2, v̇2 = −v1, y0 = −v1.

We assume the interconnection topology is switching between graph Gi (i = 1, 2) described by
Figure 1. The switchings are periodically carried out as {G1,G2,G1,G2, · · · } with periods t = 5.

0 1 2 3

(a) The graph G1

0 1 2 3

(b) The graph G2

Figure 1 The communication graphs

The uncertain parameters ε1, ε2, ε3 are taken between [−1, 1]. The robust consensus tracking
performances under state and output feedback control laws were depicted in Figures 2 and 3.
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(a) The trajectories of the leader and followers

0 5 10 15 20 25 30 35 40
−3

−2

−1

0

1

2

3

t(s)

Tr
ac

ki
ng

 e
rr

or
s o

f a
ll 

ag
en

ts

 

 
Agent 1
Agent 2
Agent 3

(b) The tracking errors of three followers

Figure 2 The tracking performance of three agents under the controller (7)
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Figure 3 The tracking performance under the controller (12)

5 Conclusions

A robust consensus tracking problem of heterogeneous multi-agent systems was solved to
admit small uncertain parameters in the agents’ systems. In conjunction with the internal model
techniques, a common Lyapunov function was used to overcome the challenges of switching
topologies. Future work includes extensions to more general graphs and multiple leaders.
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