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ABSTRACT
In this paper, a leader-following coordination problem of heterogeneous multi-agent systems is consid-
ered under switching topologies where each agent is subject to some local (unbounded) disturbances.
While these unknown disturbances may disrupt the performance of agents, a disturbance observer-based
approach is employed to estimate and reject them. Varying communication topologies are also taken into
consideration, and their byproduct difficulties are overcome by using common Lyapunov function tech-
niques. According to the available information in difference cases, two disturbance observer-based proto-
cols are proposed to solve this problem. Their effectiveness is verified by simulations.

1. Introduction
In the past decades, there has been a large literature in the
study of multi-agent systems due to its wide applications such
as cooperative control of unmanned aerial vehicles, communi-
cation among sensor networks, and formation of mobile robots
(see Olfati-Saber, Fax, & Murray, 2007; Ren & Beard, 2008, and
the references therein). As an important topic ofmulti-agent sys-
tems, the leader-following problem is actively studied by many
authors (e.g. Clark, Alomair, Bushnell, & Poovendran, 2014;
Leonard & Fiorelli, 2001; Ren & Beard, 2005). In this formu-
lation, one or multiple agents are selected as leaders to generate
desired trajectories for those followers and lead the whole group
to achieve collective tasks (Hong, Hu, &Gao, 2006; Lou&Hong,
2012;Meng, Zhao, & Lin, 2013; Peng,Wang, Sun, &Wang, 2014;
Wen, Hu, Yu, Cao, & Chen, 2013; Zhang, Lewis, & Das, 2011).

It has been well recognised that disturbance rejection is of
fundamental importance in the applicability of designed con-
trollers. While there are always disturbances in real applica-
tions, it is necessary to take them into consideration and atten-
uate or eliminate them for multi-agent control design. In Bauso
et al. (2009), for first-order multi-agent systems, it was shown
that under bounded unknown external disturbances, the steady-
state errors of any two agents can reach a small region and is
called lazy consensus. Later, the authors of Liu and Jia (2010)
proposed an H� analysis approach to investigate robust con-
sensus problem of high-order multi-agent systems with exter-
nal disturbances. In Zhang and Liu (2013), consensus of multi-
agent systems with exogenous disturbances was considered,
and an observer was constructed to compensate the negative
effect of those disturbances. However, most of these results were
obtained for special dynamic systems, and there are few gen-
eral consensus results emphasising disturbance rejection with
an exception (Su &Huang, 2012), where the authors considered
leader-following consensus with disturbance rejection from the
viewpoint of output regulation (Wonham, 1979) and solved it
for linear multi-agent systems with a fixed topology.
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Also, note that, in centralised or decentralised setup, there
is usually no need to partition and treat those disturbances and
references in a separate way. However, in multi-agent systems,
it would be better to distinguish those two kinds of signals and
not to model them in the same manner. Intuitively, the refer-
ence is globally set up to drive all agents to complete a common
task,while the disturbances are usually local andharmful to such
cooperation. Thus, anothermotivation of this paper is to formu-
late a problem that treats those two kinds of signals by different
approaches.

Hence, we aim to investigative a coordination problem of
heterogeneous multi-agent systems under switching topologies,
where the reference is given by a traditional leader. At the same
time, those followers may be subject to local disturbances mod-
elled by some other autonomous systems. Since the disturbances
are often unmeasurable, a disturbance observer-based (DOB)
approach (Chen, Ballance, Gawthrop, & O’Reilly, 2000; Nakao,
Ohnishi, & Miyachi, 1987) is employed to tackle this problem.
DOB approach stems from feedforward control, and can be per-
ceived as a composite controller comprising a feedforward com-
pensation part to reject those disturbances, based on distur-
bance observation and a feedback rule to regulate the plant to
achieve other goals. Although it has been investigated by many
publications (see Li et al., 2014, and references therein), there
is no corresponding result to our knowledge for heterogeneous
multi-agent systems.

To sum up, the main contributions of the present paper are
at least twofold:

� We extend the conventional leader-following consensus
(e.g. Hong et al., 2006; Ren & Beard, 2008) to general
linear multi-agent systems with local disturbances (which
may be unbounded). When there are no such distur-
bances, these results are consistent with existing consen-
sus results. Here, we consider heterogeneous multi-agent
systems under switching topologies, while many exist-
ing results were derived for only second-order dynamic
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systems (Hu & Feng, 2010) or for fixed graph cases (Su &
Huang, 2012).

� We extend the conventional DOB approach (Chen et al.,
2000) to its distributed version for multi-agent systems
with both reference tracking and disturbance rejection.
When there is only one agent, our problem becomes the
conventional DOB formulation. Even for the centralised
case, we propose different full-order and reduced-order
disturbance observers to solve this problem without using
the derivative of the plant’s states as that in Li et al. (2014).
It is also remarkable that these disturbance observers can
allow both bounded disturbances (e.g. constant and har-
monic signals in existing literature) and unbounded dis-
turbances (e.g. ramping and polynomial signals).

The rest of this paper is organised as follows. In Section 2, some
preliminaries are given and our problem is formulated. Then,
the main results are presented in Section 3, where two types of
control laws are constructed. Finally, simulations and our con-
cluding remarks are provided in Sections 4 and 5, respectively.

Notations: Let R
n be the n-dimensional Euclidean space,

R
n×m be the set of n × m real matrices. 0n×m represents an

n × m zero matrix. diag{b1,…,bn} denotes an n × n diago-
nal matrix with diagonal elements b1, … , bn; col(a1, . . ., an) =
[aT1 , . . ., aTn ]T for column vectors ai (i = 1,…,n). A weighted
directed graph (or weighted digraph) G = (N , E,A) is defined
as follows, where N = {1, . . ., n} is the set of nodes, E ⊂ N ×
N is the set of edges, and A ∈ R

n×n is a weighted adjacency
matrix (Mesbahi & Egerstedt, 2010). (i, j) ∈ E denotes an edge
leaving fromnode i and entering node j. Theweighted adjacency
matrix of this digraphG is described byA= [aij]i, j = 1,…,n, where
aii = 0 and aij � 0 (aij > 0 if and only if there is an edge from
agent j to agent i). A path in graph G is an alternating sequence
i1e1i2e2���ek − 1ik of nodes il and edges em = (im, im+1) ∈ E for
l = 1, 2,…,k. If there exists a path from node i to node j, then
node i is said to be reachable from node j. The neighbour set of
agent i is defined asNi = { j : ( j, i) ∈ E} for i= 1,…,n. A graph
is said to be undirected if aij = aji (i, j = 1,…,n). The weighted
Laplacian L = [li j] ∈ R

n×n of graph G is defined as lii = �j � iaij
and lij = −aij(j � i).

2. Problem formulation
In this paper, we consider N + 1 agents and N of them are fol-
lowers of the form:

ẋi = Aixi + Biui + Eidi
yi = Cixi + Diui, i = 1, . . . ,N

(1)

where xi ∈ R
ni , yi ∈ R

l , and ui ∈ R
mi are the state, output, and

input of the ith subsystem, respectively. di ∈ R
qi is the local dis-

turbance of agent i governed by

ḋi = Sidi. (2)

The reference signal is given by a leader (denoted as agent 0)
described as

ṙ = S0r, y0 = F0r, r ∈ R
n0 (3)

Without loss of generality, we assume (F0, S0) is detectable and
S0, ..., SN have no eigenvalues lying in the open left half plane.
Let ei = yi − y0 (i= 1,…,N), we aim to design proper controllers
such that for any initial condition xi(0), di(0), r(0), the tracking
error ei will converge to zero as time goes to infinity in spite of
these disturbances.

Unlike in centralised cases, we do not assume the availabil-
ity of y0 (hence r) to all agents in our problem. An agent can
get access to y0 unless there is an edge between this agent and
the leader. This makes it much difficult to achieve collective
behaviours. Associated with this multi-agent system, a dynamic
digraph G can be defined with the nodes N = {0, 1, . . . ,N} to
describe the communication topology, which may be switching.
If the control ui can get access to the information of agent j at
time instant t, there is an edge (j, i) in the graph G, i.e. aij > 0.
Also, note that a0i = 0 for i = 1,…,N, since the leader will not
receive any information from the followers. Denote the induced
subgraph associated with all followers as Ḡ.

We say a communication graph is connected (Hong et al.,
2006) if the leader (node 0) is reachable from any other node
of G and the induced subgraph Ḡ is undirected. Given a com-
munication graph G, denote H ∈ R

N×N as the submatrix of its
Laplacian L by deleting the first row and the first column. By
Lemma 3 in Hong et al. (2006),H is positive definite if the com-
munication graph is connected. Denote its eigenvalues as λ1 �
λ2 � ��� � λN > 0.

In multi-agent systems, the connectivity graph G may be
time-varying. To describe the variable interconnection topol-
ogy, we denote all possible communication graphs as G1,...,Gκ ,
P = {1, . . . , κ}, and define a switching signal σ : [0,∞) → P ,
which is piece-wise constant defined on an infinite sequence
of nonempty, bounded, and contiguous time intervals. Assume
ti + 1 − ti � τ 0 > 0,�i, where ti is the ith switching instant and
t0 = 0. Here, τ 0 is often called the dwell-time. Therefore, Ni
and the connection weight aij (i, j= 0, 1,…,N) are time-varying.
Moreover, the Laplacian Lσ (t) associated with the switching
interconnection graphGσ (t ) is also time-varying (switched at ti, i
= 0, 1, …), though it is a time-invariant matrix in each inter-
val [ti, ti + 1). The following assumption on the communication
graph is often made (e.g. Hong et al., 2006).

Assumption 2.1: The graph Gσ (t ) is switching among a group of
connected graphs.

The coordination problem of these heterogeneous multi-
agent systems composed of (1), (2), and (3) under switching
topologies is described as follows. Given these multi-agent sys-
tems and the communication graphGσ (t ), find a proper distributed
control law such that for all initial conditions of the closed-loop
system, we have

lim
t→+∞ ei(t ) = 0, i = 1, . . . ,N. (4)

Remark 2.1: While a large literature inmulti-agent systems con-
sidered only a global reference tracking problem (Ni & Cheng,
2010; Tang, 2014) or treated those disturbances and the refer-
enced signal in the same manner (Su & Huang, 2012), both
reference tracking and disturbance rejection are considered
in this formulation while local disturbances are modelled by
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separate autonomous systems. When di = 0, this formulation
is consistent with existing consensus results for general lin-
ear dynamics (e.g. Ni & Cheng, 2010), which include the well-
known consensus for integrators (Olfati-Saber et al., 2007) as its
special case.

3. Main results
In this section, we employ a two-phase design procedure to
achieve the coordination goal. First, we construct a distributed
observer for each agent and transform such a coordination prob-
lem of this multi-agent system into N decentralised sub-tasks.
Then, those sub-tasks will be completed via DOB approach
together with both full-order and reduced-order controllers.

The following lemma is useful and can be proved from the
convergent-input convergent-state property of the first subsys-
tem (Sontag, 2008).

Lemma 3.1: Consider the linear time-varying system

˙̄x = Āx̄ + B̄v̄

˙̄v = S̄(t )v̄

ē = C̄x̄ + F̄ v̄ .

If Ā is Hurwitz and the subsystem ˙̄v = S̄(t )v̄ is uniformly expo-
nentially stable, then for any x̄(0) = x̄0 and v̄(0) = v̄0, it holds
limt→+∞ ē(t ) = 0.

By letting v i�col(di, r) and some mathematical manipula-
tions, this leader-following coordination problem is equivalent
to the following N sub-problems:

ẋi = Aixi + Biui + Ēivi
v̇i = S̄ivi
ei = Cixi + Diui + F̄ivi

(5)

where Ēi = [Ei, 0ni×l], S̄i = block diag{Si, S0}, and F̄i =
[0l×qi , −F0]. v i is the exogenous signal for agent i includ-
ing its local disturbance di and the global reference r.

The following equations known as regulator equations
(Huang, 2004) play a key role in solving the coordination prob-
lem of multi-agent systems.

Assumption 3.1: For each i= 1, …, N, there exist constantmatri-
ces Xi1, Xi2, Ui1, and Ui2 satisfying

Xi1Si = AiXi1 + BiUi1 + Ei
0 = CiXi1 + DiUi1

and

Xi2S0 = AiXi2 + BiUi2

0 = CiXi2 + DiUi2 − F0.

Remark 3.1: Similar conditions have been used inWang (2013)
and Su and Huang (2012). A sufficient condition to the solvabil-
ity of these linear matrix equations is that, for any eigenvalue of

Si (denoted as λ), i = 0,…,N,

rank
[
Ai − λI Bi

Ci Di

]
= ni + p.

Specially, when all agents are homogenous without local distur-
bances,Xi2 can be taken as the identitymatrix whichwas implic-
itly used in Ren and Beard (2008) and Meng et al. (2013).

Note that (Ai, Bi) is stabilisable, there exists Ki1 such that
Ai + BiKi1 is Hurwitz. Denote Ki2�Ui1 − Ki1Xi1,Ki3�Ui2 −
Ki1Xi2. By Theorem 1.7 in Huang (2004), the full-information
controller ui = Ki1xi + Ki2di + Ki3r trivially solves the output
regulation problem of the ith subsystem (5), and hence achieves
the leader-following coordination goal of the whole multi-agent
system in a centralised setup. Inspired by the separate princi-
ple for single linear systems (Wonham, 1979), we follow a sim-
ilar design and replace the unavailable quantities in the full-
information control law by their estimations.

Since not all agents can directly get access to the reference sig-
nal (i.e. the leader), we first construct the following distributed
observer for agent i to estimate r, and transform the original
coordination problem into several decentralised ones:

η̇i = S0ηi + L0F0ηv i, (6)

where ηv i = ∑N
j=0 ai j(t )(ηi − η j), η0 = r, i = 1,…,N, and L0 is

a constant matrix to be designed. Letting η̄i � ηi − r and denot-
ing η̄ = col(η̄1, . . . , η̄N ) gives

˙̄η = [IN ⊗ S0 + Hσ (t ) ⊗ (L0F0)]η̄. (7)

The following lemma shows the effectiveness of this dis-
tributed observer:
Lemma3.2: UnderAssumption 2.1, there exists a constantmatrix
L0 such that system (7) is uniformly exponentially stable in the
sense of ||η̄|| ≤ c0e−λ0t for some positive constants c0 and λ0.

Proof: For this purpose, we only have to determine an L0 such
that, for each i, there exist two constants c̄0i and λ̄0i such that
||ηi − v|| ≤ c0ie−λ0it .

Note that Hσ (t) is positive definite and constant during each
interval [ti, ti + 1) under Assumption 2.1. We first consider this
problem in each interval. Assume σ (t) = p for t 	 [ti, ti + 1),
there exists a unitary matrix Up such that �p � UT

p HpUp =
diag{λp

1, . . . , λ
p
N}. Let η̂ = (UT

p ⊗ IN )η̄, then,

˙̂η = (IN ⊗ S0 + �p ⊗ L0F0)η̂

that is, ˙̂ηi = (S0 + λ
p
i L0F0)η̂i for i = 1,…,N, where λ

p
i > 0 for

i = 1,…,N are the eigenvalues of Hp (p ∈ P). Since (S0, F0) are
detectable, there exists (Boyd et al., 1994) a positive definite sym-
metric matrix P satisfying

PS0 + ST0 P − 2FT
0 F0 < 0. (8)

Note that theminimumeigenvalue ofHp for all p is well-defined.
Denoting it as λ̄ > 0 and taking L0 = −μ∗P−1FT

0 with μ∗ �
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max{ 1
λ̄
, 1} gives

(S0 + λ
p
i L0F0)

TP + P(S0 + λ
p
i L0F0)

= ST0 P + PS0 − 2μ∗λp
i F

T
0 F0

= ST0 P + PS0 − 2FT
0 F0 − 2(μ∗λp

i − 1)FT
0 F0

≤ ST0 P + PS0 − 2FT
0 F0

Since ST0 P + PS0 − 2FT
0 F0 is negative definite, under Assump-

tion 2.1, there exists a positive constant c, such that

(S0 + λ
p
i L0F0)

TP + P(S0 + λ
p
i L0F0) ≤ −cP (9)

By letting Vη = ∑N
i=1 η̂T

i Pη̂i, we can derive V̇η ≤ −cVη.
Recalling the dwell-time assumption, this inequality holds for
all t. Note that η̄T η̄ = η̂T η̂, it follows

||ηi − v||2 ≤ η̂T η̂ ≤ λmin(P)−1Vη(t ) < λmin(P)−1Vη(0)e−ct .

The conclusion is readily obtained. �
Remark 3.2: Although η0 = r appears in (6), y0 = F0η0 will suf-
fice this design. When y0 = r (i.e. F0 = Ip), it means that the
state of the leader can be directly obtained when some agent
is connected to it. This circumstance has been partly consid-
ered in Su andHuang (2012).We extend these results using only
output measurements of the leader to deal with the cases when
only partial states are available. Similar control laws were pro-
posed in Hong et al. (2006) when the followers are all integra-
tors, while here we consider general linear agents and also local
disturbances.

After building distributed observers for those followers, it is
natural to replace r by its estimation ηi. The following lemma
guarantees the validity of this substitution and shows how it
transforms the coordination problem of these multi-agent sys-
tems into N decentralised estimation and regulation sub-tasks.

Lemma 3.3: Under Assumptions 2.1 and 3.1, ui = Ki1xi +
Ki2di + Ki3ηi, η̇i = S0ηi + L0F0ηv i will solve the output regula-
tion problem of system (5), and hence the leader-following coor-
dination problem of this multi-agent system with the selected L0,
where Ki1, Ki2, Ki3 are matrices defined in the centralised case.

Proof: Under Assumption 3.1, letting x̄i = xi − Xi1di − Xi2r
gives

˙̄xi = (Ai + BiKi1)x̄i + BiKi3η̄i

˙̄ηi = S0η̄i + L0F0ηv i

ei = (Ci + DiKi1)x̄i + DiKi3η̄i (10)

or in compact form

˙̄x = Āx̄ + B̄η̄

˙̄η = (IN ⊗ S0 + Hσ (t ) ⊗ L0F0)η̄
e = C̄x̄ + D̄η̄ (11)

where x̄ = col(x1, . . . , xN ) and

Ā = block diag{A1 + B1K11, . . . ,AN + BNKN1},
B̄ = block diag{B1K13, . . . ,BNKN3},
C̄ = block diag{C1 + D1K11, . . . ,CN + DNKN1},
D̄ = block diag{D1K13, . . . ,DNKN3}.

Since Ā is Hurwitz, by Lemmas 3.1 and 3.2, ei = yi − y0 will
converge to zero as t → �. �

Next, we aim to solve those decentralised reference tracking
and disturbance rejection problems. As having been pointed out
before that the disturbances are often unmeasurable, the control
law in Lemma 3.3 is not implementable. To tackle this problem,
we employ the DOB approach which has been well studied in its
centralised version by many authors (e.g. Li et al., 2014; Nakao
et al., 1987).

Basically, we seek to reconstruct an estimation of the distur-
bances that affect the tracking performance, and then use these
estimations to achieve disturbance rejection. Hence, the follow-
ing assumption comes naturally.

Assumption 3.2: For each i = 1,…,N, the pair(
[Ci, 0l×qi],

[ Ai Ei
0ni Si

])
is detectable.

We first consider the output feedback cases, where only yi is
available through measurement, and propose a composite con-
trol law in the following form:

ξ̇i = Aiξi + Eiζi + Biui − Li1(yi − ŷi)

ζ̇i = Siζi − Li2(yi − ŷi)
η̇i = S0ηi + L0F0ηv i

ui = Ki1ξi + Ki2ζi + Ki3ηi, i = 1, . . . ,N (12)

where ŷi = Ciξi + Diui, i = 1,…,N, and Li1, Li2 are constant
matrices such that

Aci �
[
Ai + Li1Ci Ei

Li2Ci Si

]

is Hurwitz.
It is time to give our first main theorem.

Theorem 3.1: Under Assumptions 2.1, 3.1, and 3.2, the leader-
following coordination problem of the multi-agent system com-
posed of (1), (2), and (3) can be solved by the control law (12).

Proof: Let x̂i = ξi − xi, d̂i = ζi − di, and x̄i = xi − Xi1di − Xi2r.
Under the control law (12), the closed-loop system of agent i is
of the form

˙̄xi = (Ai + BiKi1)x̄i + BiKi1x̂i + BiKi2d̂i + B̄iKi3η̄i

˙̂xi = (Ai + Li1Ci)x̂i + Eid̂i
˙̂di = Li2Cix̄i + Sid̂i
˙̄ηi = S0η̄i + L0F0ηv i

ei = (Ci + DiKi1)x̄i + DiKi1x̂i + DiKi2d̂i + DiKi3η̄i

(13)
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Let x̄ = col(x1, . . . , xN ), v̄ = col{x̂1, . . . , x̂N, d̂1, . . . , d̂N,

η̄1, . . . , η̄N}, and the whole multi-agent system can be put into
a compact form as

˙̄x = Āx̄ + B̄v̄

˙̄v = S̄v̄

e = C̄x̄ + F̄ v̄

(14)

where Ā = block diag{A1 + B1K11, . . . ,AN + BNKN1}, S̄
= blockdiag{Ac1, . . . ,AcN, IN ⊗ S + Hσ (t ) ⊗ L0F0}, B̄ =
[B̄1, B̄2, B̄3], C̄ = block diag{C1 + D1K11, . . . , CN + DNKN1},
F̄ = [F̄1, F̄2, F̄3] and B̄k = block diag{B1K1k, . . . , BNKNk},
F̄k = block diag{D1K1k, . . . , DNKNk} (k = 1, 2, 3). Since Ā
and Aci are Hurwitz, by Lemmas 3.1 and 3.2, ei = yi − y0 will
converge to zero as t → �. The proof is thus completed. �
Remark 3.3: When Ei = 0 for all agents, it reduces to the well-
studied leader-following consensus problem considering only
reference tracking problem. Then, the relevant results in Olfati-
Saber et al. (2007) and Ren and Beard (2008) are actually spe-
cial cases of this theorem for integrators. Even when the leader
has a general linear dynamics as in Ni and Cheng (2010), we
consider both reference tracking and local disturbance rejection
problems under switching topologies.

Remark 3.4: When N = 1, this problem becomes a centralised
reference tracking and disturbance rejection problem. While
most of the existing DOB results focus on rejecting those dis-
turbances (e.g. Chen et al., 2000; Li et al., 2014), our design also
incorporates the reference tracking aspects. Those DOB con-
trollers can admit not only bounded disturbances (e.g. constants
and sinusoidal signals) but also unbounded disturbances (e.g.
ramping signals and polynomials) under switching topologies.

In many circumstances, the state xi may be available for us by
directmeasurement or other treatments. Thus, there exists a cer-
tain degree of redundancy in the controller (12), which still pro-
duces the estimations of xi. To remove such redundancies and
save our controller’s order, we propose a reduced-order DOB
control law to facilitate our design.

For this multi-agent system, the reduced-order disturbance
observer is given as follows:

ζ̇i = (Si + LiEi)ζi + (LiAi − SiLi − LiEiLi)xi + LiBiui
η̇i = S0ηi + L0F0ηv i

ui = Ki1xi + Ki2(ζi − Lixi) + Ki3ηi, i = 1, . . . ,N (15)

where Kij, i = 1,…,N, j = 1, 2, 3, and Li are gain matrices to be
determined later.

With this reduced-order controller, the following theorem
can be derived:
Theorem 3.2: Under Assumptions 2.1, 3.1, and 3.2, there exist
constant matrices Kij and Li, i = 1,…,N, j = 1, 2, 3, such that the
leader-following coordination problem of this multi-agent system
is solved by the control law (15).

Proof: The proof is similar with that of Theorem 3.1. Let d̂i =
ζi − Lixi − di, and x̄i = xi − Xi1di − Xi2r. Under the control law

(15), the closed-loop system of agent i is with the form of

˙̄xi = (Ai + BiKi1)x̄i + BiKi2d̂i + B̄iKi3η̄i

˙̂di = (Si + LiEi)d̂i
˙̄ηi = S0η̄i + L0F0ηv i

ei = (Ci + DiKi1)x̄i + DiKi2d̂i + DiKi3η̄i

(16)

Let x̄ = col(x1, . . . , xN ), v̄ = col{d̂1, . . . , d̂N, η̄1, . . . , η̄N}. By
some mathematical manipulations, the whole multi-agent sys-
tem can be put into a compact form as

˙̄x = Āx̄ + B̄v̄

˙̄v = S̄v̄

e = C̄x̄ + F̄ v̄

(17)

where

Ā = block diag{A1 + B1K11, . . . ,AN + BNKN1}
B̄ = block diag{B1K13, . . . , BNKN3},
C̄ = block diag{C1 + D1K11, . . . , CN + DNKN1},
F̄ = block diag{D1K13, . . . , DNKN3},
S̄ = block diag{S1 + L1E1, . . . , SN + LNEN, IN ⊗ S

+ Hσ (t ) ⊗ L0F0}.

According to Lemmas 3.1 and 3.2, we only have to findproper
Kij andLi such that Ā and Si +LiEi are allHurwitz. Then, by sim-
ilar arguments as that in Theorem 3.1, ei = yi − y0 will converge
to zero as t → �. In fact, such gain matrices indeed exist. Take
Kij as defined in Theorem 3.1, and the detectability of (Ei, Si) will
suffice the selection of Li, which is obvious by PBH-test under
Assumption 3.2. Thus, the conclusion follows readily. �
Remark 3.5: As having been pointed before, unlike in existing
cooperative output regulation result (Su & Huang, 2012), the
disturbances are locally modelled by different autonomous sys-
tems from that of the global reference. A similar setup has been
used in Wang et al. (2014) and Tang et al. (2015). This sepa-
rate modelling method results in two dissimilar treatments, dis-
tributed observers for the global reference and DOB approach
for the local disturbances, which may enhance the effectiveness
of our design and bring a better performance. Also, even for the
case when N = 1, we proposed different reduced-order distur-
bance observers from that in Li et al. (2014) to solve this problem
without using the derivative of the plant’s states.

4. Simulations
As an example, we consider the coordination problem for a
multi-agent system consisting of three followers and one leader.
The follower agents are the mass-damper-spring systems with
unit mass described by

ÿi + giẏi + fiyi = ui + Eidi, i = 1, 2, 3

where di is the local disturbance. Those disturbances are mod-
elled by S1 = [0, 1; 0, 0], E1 = [1, 0]; S2 = 0, E2 = 1; S3 =
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Table . Gain matrices for each agent in simulations.

Simulation  Simulation 

Agent  K = [, ] K = [− , ] K = [, ] L = [− .;−.]
L = [− .;−.] L = [− .;−.] L = [,−; ,−]

Agent  K = [− , ] K = − K = [, ] L = [− .;−.]
L = [− .;−.] L = −. L = [,−]

Agent  K = [,−] K = [− , ] K = [, ], L = [− .;−.]
L = [− .;−.] L = [− .; .] L = [,−; , ]

Figure . The communication graphs.

[0, 1; −1, 0],E3 = [1, 0]. The leader is specified by a harmonic
oscillator: ṙ1 = r2, ṙ2 = −r1, y0 = r1. We assume here that the
interconnection topology is switching between graph G1 and G2
described by Figure 1. The switchings are periodically carried
out in the order {G1,G2,G1,G2, . . .} with a switching period of
t = 5 s.

Letting xi1 = yi, xi2 = ẏi, then,

ẋi1 = xi2, ẋi2 = − fixi1 − gixi2 + ui + Eidi, yi = xi1.

Apparently, the coordination laws in Hong et al. (2006) and Ni
and Cheng (2010) will not work for these agents. Even the dis-
continuous rule (Bauso et al., 2009) fails to solve this problem
because of unbounded disturbances in Agent 1. Nevertheless, as
Assumptions 2.1, 3.1, and 3.2 are satisfied, it can be solved by the
methods given in last sections.

For simulations, the system parameters are taken as f1 = 1,
g1 = 1, f2 = 0, g2 = 1 and f3 = 1, g3 = 0. By solving the regulator
equations in Assumption 3.1 and also the Lyapunov inequality
(8), we choose proper gain matrices for the controllers as shown
in Table 1. While the initials for the plant is generated between
[ − 1, 1]2, the initials for controllers are set at their origins. The
simulation results using full-order and reduced-orderDOB con-
trol are shown in Figures 2 and 3, respectively. We list the out-
puts of agents at several time points in Table 2. It can be found
that after 21 s, the agents can track the leader and reject those
disturbances with an error tolerance of 2 × 10−3.
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Figure . Tracking performance with output feedback control law ().

Table . Outputs of each agent in simulations.

Sampling time t=  s t=  s t=  s t=  s t=  s t=  s t=  s t=  s

Reference output −. −. . −. . −. . −.
Simulation  Agent  −. −. . −. . −. . −.

Agent  −. −. . −. . −. . −.
Agent  −. −. . −. . −. . −.

Simulation  Agent  −. −. . −. . −. . −.
Agent  −. −. . −. . −. . −.
Agent  −. −. . −. . −. . −.
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Figure . Tracking performance with reduced-order DOB feedback control law ().

5. Conclusions
A leader-following coordination problem was solved for a class
of heterogeneous multi-agent systems subject to local distur-
bances under switching topologies. By devising a distributed
observer, this problem was transformed into several decen-
tralised estimation and regulation sub-tasks, and eventually
solved by two DOB control laws. Our future work will include
nonlinear cases and with more general graphs.
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