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OUTPUT CONSENSUS OF NONLINEAR MULTI-AGENT
SYSTEMS WITH UNKNOWN CONTROL DIRECTIONS

Yutao Tang

In this paper, we consider an output consensus problem for a general class of nonlinear multi-
agent systems without a prior knowledge of the agents’ control directions. Two distributed
Nussbaum-type control laws are proposed to solve the leaderless and leader-following adaptive
consensus for heterogeneous multiple agents. Examples and simulations are given to verify their
effectiveness.
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1. INTRODUCTION

Multi-agent system has been a hot topic in the last decades due to its numerous appli-
cations, such as cooperative control of unmanned aerial vehicles, communication among
sensor networks, and formation of mobile robots([16, 18]). As one of the most important
problems, consensus with or without leaders has been extensively studied. For example,
various distributed protocols were proposed and analyzed in [18] for both leader-following
and leaderless cases. In [7], the authors proposed a distributed observer-based control
law using local information to track an integrator-type leader. Later, this work has been
extended to multi-agent systems with a general linear dynamics ([8, 14]) under switching
topologies. Other extensions including consensus under time-delay communications or
with an unknown-input driven leader have been studied in [5, 9, 21].

Output consensus problem of nonlinear agents have also been studied by many au-
thors. As an extension for single integrators, the output synchronization of a group of
input-output passive nonlinear systems were investigated in [3] by adding proper cou-
plings between them. Similar results were obtained in [6], where networks of cyclic
feedback biochemical oscillators were analyzed by dissipativity theory to achieve syn-
chronization. In [22], nonlinear multi-agent systems in output feedback form with unity
relative degree was studied to achieve leader-follower consensus. However, most of ex-
isting results were obtained by assuming the control direction matrix or at least the sign
for single-input single-output case was known.
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In practice, a control direction may not always be known a priori in many applications.
For example, under some steering conditions like a course-changing operation, the control
direction of a ship may be unknown [4]. Even if it is known at first, the control direction
of a plant may be changed by some structural damage [12]. To tackle this problem, the
Nussbaum-type function, originally proposed in [15], has been extensively used to solve
such a problem.

For a single system with only one Nussbaum-type function used ([15]), the stability
of the closed-loop system can be analyzed relatively easily. For a group of systems that
are (physically) interconnected and each system involves an unknown control direction,
the control design and stability analysis become more difficult since the controller of
each subsystem might need one Nussbaum-type function. A decentralized adaptive
control problem was first tackled in [23] by respectively constructing a single Lyapunov
function candidate for each subsystem and employing one Nussbaum-type function for
each corresponding subsystem. Recently, to achieve the consensus of integrator-type
agents, a special type of Nussbaum functions has been constructed in [2]. However,
these results relied on the assumption that all unknown control directions are with the
same sign. In fact, the results on consensus for agents with unknown heterogonous high-
frequency gain signs are very few with only one exception [17], where a Nussbaum-type
adaptive controller was designed for each single-integrator agent such that consensus
of the multi-agent network can be achieved. Nevertheless, the solvability of consensus
among more general linear and nonlinear agents with unknown control directions is still
unclear.

To answer this question, we mainly emphasize on a class of nonlinear heterogeneous
agents having a passivity-like property with unknown control directions. By constructing
a Nussbaum-type protocol, we can achieve leaderless output consensus under a mild
connectivity condition of the communication graph among those agents. With some
minor modifications, this protocol is also able to drive all agents to some desired value,
such as the equilibrium. In this way, our main contributions are at least two-fold:

• We consider a group of heterogeneous agents with unknown control directions.
Comparing with the results in [2], this control protocol can allow the cases when
those control directions have nonidentical signs. These conclusions are consistent
with existing coordination results in [1, 18].

• We consider a more general class of agent’s systems with unknown control di-
rections, which strictly cover those heterogeneous single integrators considered in
[2, 17]. Even for those single integrators, these results still hold for a class of di-
rected graphs, while the conclusions in [2] are obtained only for undirected graphs.

The rest of this paper is organized as follows. Some preliminaries and problem for-
mulation are given in Section 2 and 3. Main results are presented in Section 4, where
two types of adaptive control laws are proposed for both leaderless and leader-following
cases. Finally, simulations and our concluding remarks are presented at the end.

Notations: Let Rn be the n-dimensional Euclidean space, and Rn×m be the set of n×
m real matrices. For a vector x, ||x|| denotes its Euclidian norm. diag{b1, . . ., bn} denotes
an n × n diagonal matrix with diagonal elements bi (i = 1, . . ., n); col(a1, . . ., an) =
[aT

1 , . . ., aT
n ]T for any column vectors ai (i = 1, . . ., n).
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2. PRELIMINARIES

Before the main results, we introduce some preliminaries on graph theory and nonlinear
systems.

A directed graph (or digraph) G = (N , E), where N = {1, . . ., n} is the set of nodes
and E is the set of edges ([13]). (i, j) denotes an edge leaving from node i and entering
node j. A directed path in graph G is an alternating sequence i1e1i2e2· · ·ek−1ik of nodes
il and edges em = (im, im+1) ∈ E for l = 1, 2, . . ., k. If there exists a directed path from
node i to node j then node i is said to be reachable from node j. The neighbor set of
agent i is defined as Ni = {j : (j, i) ∈ E} for i = 1, ..., n. A weighted adjacency matrix
of a digraph G is denoted by A = [aij ] ∈ Rn×n, where aii = 0 and aij ≥ 0 (aij > 0 if
and only if there is an edge from agent j to agent i). The Laplacian L = [lij ] ∈ Rn×n of
digraph G is defined as lii =

∑
j 6=i aij and lij = −aij(j 6= i). Define the in-degree and

out-degree of node i as din
i =

∑
j aij and dout

i =
∑

j aji, respectively. Node i is balanced
if and only if its in-degree equals its out-degree, the digraph G is weight-balanced if and
only if all of its nodes are balanced. Note that L1 = 0, a digraph is weight-balanced
if and only if 1TL = 0. For a digraph, its underlying graph is the graph obtained by
replacing all the directed edges with undirected edges. If between every pair of distinct
vertices, there is a directed path, this digraph is said to be strongly connected. A digraph
is weakly connected if its underlying graph is connected. As stated in [13], let G be a
digraph with Laplacian matrix L, then L̂ = L + LT is a valid Laplacian matrix for
its mirror graph Ĝ if and only if G is balanced. A digraph is said to be undirected if
aij = aji (i, j = 1, . . ., n). Obviously, any undirected graph is balanced.

A dynamic system

ẋ = f(x, u), y = h(x), x ∈ Rn, u, y ∈ Rp (1)

is said to be passive ([19]), if there exists a continuously differentiable function V (x) ≥ 0
such that

V̇ ≤ −W (x) + uTy

for some positive semidefinite function W (x). V (x) is often called its storage function.
This system is said to be strictly passive if W (x) is positive definite. Passivity, due to its
explicit physical meaning and simplicity to manipulate, has been extensively by many
authors both for a single plant and multi-agent systems (e. g., [1, 19]). For simplicity,
we only consider in this paper the single-input single-output case, i. e., p = 1.

It has been proved that the passivity of a dynamic system is much related to its
high-frequency gain ([11]), which represents the motion direction of the system in any
control strategy. In most of existing literatures, this control direction is assumed to be
known a prior, or the high-frequency-gain sign is positive, e. g.,[1, 19, 20]. As having been
mentioned, the control direction of a plant might be unknown or change under sudden
structural damages. Thus, we consider a general class of nonlinear passive systems
with unknown control directions, that is, for system (1), there exists a continuously
differentiable function V (x) ≥ 0 such that

V̇ (x) ≤ −W (x) + buy
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where b is an unknown non-zero constant and W (x) some positive semidefinite function.
It can be found that if the constant b or its sign is known a prior, then let ū = sign(b)u,

this system is passive with input ū and output by. However, if b or its sign is unknown,
the conventional passivity-based controller is no longer applicable.

3. PROBLEM FORMULATION

Consider a multi-agent system consisting of N nonlinear agents described by

ẋi = fi(xi, ui), yi = hi(xi), i = 1, . . . , N (2)

where xi ∈ Rni ,ui ∈ R, yi ∈ R are its state, input, and output of agent i. fi(·) and hi(·)
are locally Lipschitz. Assume that, after a possible inner-loop control, these agents are
all passive but with unknown control directions, i. e., for each i, there exist a continuously
differentiable function Vi(xi) ≥ 0 and a positive semidefinite function Wi(xi) such that

V̇i(xi) ≤ −Wi(xi) + biuiyi (3)

where bi is an unknown nonzero constant.
Associated with this multi-agent system, a digraph G can be defined with the nodes

N = {1, ..., N} to describe the communication topology. If the control ui can get access
to the output information of agent j, there is an weighted edge (j, i) in the graph G,
i. e., aij > 0.

Our control objective is to design ui for each agent in graph G, such that output
consensus of this multi-agent system composed of (2) can be achieved, i. e., yi − yj → 0
as t →∞ for any i, j = 1, . . . , N while the overall system maintains bounded.

Remark 3.1. In most of existing works considering the coordination of linear or non-
linear multi-agent systems [7, 18, 20, 22], the high-frequency-gain sign of each agent is
assumed to be known in prior. But in our formulation, the prior knowledge of each
agent’s high-frequency-gain sign is no longer necessary. Compared with the results in
[2] where all the high-frequency gains should have an identical sign, agents considered
here may have different and unknown control directions.

Remark 3.2. The class of systems considered here can not only strictly cover the sys-
tems considered in [17], but also include a rather general class of linear or nonlinear
passive systems([19]) with unknown control directions. While passivity has been em-
ployed as a powerful tool for group coordination ([1, 3]), this formulation will enlarge
its applications in multi-agent systems.

4. MAIN RESULTS

In this section, we will first present a Nussbaum-type protocol to achieve leaderless
output consensus for those heterogeneous agents, and then provide an extension to the
leader-following cases.
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Theorem 4.1. Consider the multi-agent system consisting of N agents given by (2),
there exists a distributed adaptive controller of the form

ui = −N (ki)ξi, k̇i = yiξi (4)

where ξi =
∑N

j=1 aij(yi − yj) and N (ki) = k2
i sin(ki), such that the output consensus

of this multi-agent system is achieved when the communication graph is undirected and
strongly connected.

P r o o f . The proof will be spit into two steps.

Step 1: We first prove the boundedness of xi, ui, and ki. From the smoothness
of related functions, the solution of this closed-loop system will be well-defined on its
maximal interval [0, tf ). We claim that tf = +∞. In the following, we will prove it by
seeking a contradiction. At first, assume tf is finite. Taking Vi(xi) as a sub-Lyapunov
function gives

V̇i(xi(t)) ≤ −Wi(xi(t))− biN (ki)yiξi ≤ −biN (ki)k̇i. (5)

By integrating both sides from 0 to t, it follows

Vi(xi(t))− Vi(xi(0)) ≤ −
∫ ki(t)

ki(0)

biN (s) ds (6)

and hence

Vi(xi(t)) ≤ bi[ki(t)2 cos(ki(t))− 2ki(t) sin(ki(t))− 2 cos(ki(t))] + C (7)

where C = Vi(xi(0)) − bi[ki(0)2 cos(ki(0)) − 2ki(0) sin(ki(0)) − 2 cos(ki(0))] is a finite
consonant.

We will prove the boundedness of all trajectories to get a contradiction. To prove this,
we now seek another contradiction. Without loss of generality, suppose ki(t) is upper
unbounded. From the continuousness of ki(t), we can choose a monotonic increasing
sequence tin such that

ki(tin) =

{
(2n + 1)π, if bi > 0,

2nπ, if bi < 0.

Clearly, for any i, limn→+∞ tin = tf .
By direct calculations, one has

Vi(xi(tin)) ≤

{
bi[−(2n + 1)2π2 + 2] + C, if bi > 0,

bi[4n2π2 − 2] + C, if bi < 0.
(8)

From this, we can deduce that Vi(xi(tin)) < 0 for a large enough n, which contradicts the
positive semidefiniteness of Vi(xi). Therefore, ki(t) is bounded during [0, tf ) for each i.
From (4) and (7), xi(t), ui(t) and ẋi(t), k̇i(t) are also bounded during [0, tf ) for each
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i. This implies with a contradiction argument that no finite-time escape phenomenon
happens and tf = ∞.

Step 2: In this step, we will show that yi − yj → 0 (t → ∞) for any i, j = 1, . . . , N .
Let K(t) =

∑N
i=1 k̇i(t), then

K̇(t) =
N∑

i=1

k̈i(t) =
N∑

i=1

[ẏiξi + yiξ̇i]

which is bounded from the boundedness of yi(t), ξi(t) and ẋi(t). As a result, K(t) is
uniformly continuous with respect to time t during [0, ∞).

Also, note that ∫ ∞

0

K(t) dt =
N∑

i=1

[ki(∞)− ki(0)] ≤ K∗ (9)

where K∗ is a finite constant determined by the bound of ki(t) (i = 1, . . . , N). That is,
K(t) is integrable on [0, ∞). By Barbalat’s Lemma, we can derive

lim
t→∞

K(t) = lim
t→∞

N∑
i=1

k̇i(t) = lim
t→∞

yTLy = 0

where y = col(y1, . . . , yN ) and L is the Laplacian of the undirected graph. From its
connectivity assumption and by Proposition 3.8 in [13], y → span{1N}, which completes
the proof. �

In the control law (4), multiple Nussbaum gains are employed to tackle the problem
of unknown heterogeneous high-frequency-gain signs. Although we have chosen k2 sin(k)
as the Nussbaum-type function, it can be verified that, other Nussbaum-type functions
such as k2 cos(k) and ek2

cos(k) can be employed in Step 1 as well to achieve the leaderless
output consensus among this multi-agent system.

Remark 4.2. A similar problem was considered in [2] for pure integrators with un-
known control directions. However, those results heavily relied on the assumption that
all agents have the same control direction. Here by constructing sub-Lyapunov functions
mentioned above, the control design and analysis for this group of interacting systems
are significantly simplified.

Remark 4.3. This result provides a sufficient condition to the consensus problem among
a general class of agents with heterogeneous control directions, which strictly includes
the single integrator in [17] as a special case. Also, since we only assumed those agents
having a passivity-like property, this approach may considerably enlarge the applications
of passivity as a design tool ([1]) in multi-agent systems. Moreover, when all agents are
homogenous and share an incremental observability property ([6]), they will eventually
achieve state consensus under this control law, which can be taken as an extension to
the results in [6] for networked nonlinear agents with unknown control directions.
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Unfolding the control law in (4), we may extend this conclusion to a general class of
digraphs as follows.

Corollary 4.4. Consider the multi-agent system consisting of N agents given by (2),
there exists a distributed adaptive controller of the form

ui = −N (ki)ξi, k̇i = yiξi (10)

where ξi =
∑N

j=1 aij(yi − yj) and N (ki) = k2
i sin(ki), such that the output consensus of

this multi-agent system is achieved when the communication digraph is balanced and
weakly connected.

P r o o f . By similar arguments as in Theorem 4.1, we can derive that ki, xi, ξi, ẋi, and
ξ̇i are bounded and K̇(t) =

∑N
i=1 k̈i(t) is uniformly continuous with respect to time t

and integrable on [0, ∞). Hence,

lim
t→∞

K(t) = lim
t→∞

N∑
i=1

k̇i(t) =
1
2

lim
t→∞

yT(L + LT)y = 0.

Since a weakly connected balanced digraph is automatically strongly connected, and
hence it contains a rooted out-branching. By Theorem 3.12 in [13], the corresponding
protocol can achieve output consensus of these agents. �

Without additional conditions, the controller in Theorem 4.1 can only ensure the
output consensus, i. e., yi → yj (t → ∞) for i, j. In some problems, we may also need
to drive all yi to some desired value, such as the equilibrium. It is remarkable that
this may happen automatically in some special cases after applying Barbalat’s Lemma
and then deliberately checking its asymptotical property of this multi-agent system as
a whole one. To guarantee this property, we can employ a leader-following formulation
and propose a distributed control law, where the reference is described by a leader.
Unlike in the centralized/decentralized cases when each agent knows this value, only a
few agents are assumed to know it in our cases to save the communication resources.
With some modifications on the protocol (4), a Nussbaum-type adaptive controller will
be designed for each agent in the network to realize this goal.

To keep consistence, we assume as usual the reference point is generated by a leader
(denoted as 0)

ẋ0 = 0, y0 = x0. (11)

With the help of graph notations, the information flow between the leader and those
other agents can be defined as well.

The following theorem shows how this problem can be solved for those nonlinear
heterogeneous multi-agent systems without knowing the control directions.

Theorem 4.5. Consider the multi-agent system consisting of N followers given by (2)
and a leader (11) with x0(0) = 0, there exists a distributed controller of the form

ui = −N (ki)ξi, k̇i = yiξi (12)
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where ξi =
∑N

j=1 aij(yi − yj) + ai0(yi − y0) and N (ki) = k2
i sin(ki), such that the

consensus problem of this multi-agent system can be solved when the induced subgraph
of those followers are undirected, strongly connected and the leader is globally reachable
from any other agent.

P r o o f . The proof is similar with that of Theorem 4.1. Following those procedures,
we can first prove the boundedness of xi(t), ξi(t), ẋi, and k̇i(t), and hence the uniform
continuous of K(t) =

∑N
i=1 k̇i(t) with respect to the time t. By Barbalat’s Lemma, one

can obtain

lim
t→∞

K(t) =
1
2

lim
t→∞

eT(H + HT)e = 0

where e = col(y1 − y0, . . . , yN − y0) = yT, and H is the submatrix by removing its first
row and column of the Laplacian corresponding to the N + 1 networked agent systems.
By Lemma 3 in [7], e will eventually vanish. Thus the proof is completed. �

This result still holds for a class of digraphs as follows.

Corollary 4.6. Consider the multi-agent system consisting of N followers given by (2)
and one leader (11) with x0(0) = 0, there exists a distributed controller of the form

ui = −N (ki)ξi, k̇i = yiξi (13)

where ξi =
∑N

j=1 aij(yi − yj) + ai0(yi − y0), and N (ki) = k2
i sin(ki), such that the

consensus problem of this multi-agent system can be solved when the induced subgraph
of those followers are balanced, weakly connected and the leader is globally reachable
from any other agent.

The p r o o f is similar with that of Theorem 4.5 and thus omitted.

Remark 4.7. While only leaderless consensus was investigated in [2], we provided suf-
ficient conditions to achieve leader-following consensus. The results in [17] are its special
cases when all considered agents are single integrators. Moreover, if all agents are con-
stant incremental passive ([10]), it can be extended to the non-equilibrium cases. When
no agent has an unknown control direction, these leader-following consensus results are
consistent with that in [18].

5. SIMULATIONS

In this section, we proposed several examples to verify the distributed designs in Sec-
tion 4.

First, consider a group of controlled oscillators with heterogeneous control directions
as follows. 

ẋi1 = xi2

ẋi2 = −xi1 + biui

yi = xi2.
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1 2 3 4

(a) The graph G1

1 2 3 4

(b) The graph G2

Fig. 1. The communication graphs.

Their interconnection topology is depicted in Figure 1(a) as an undirected graph, which
satisfies the assumptions in Theorem 4.1. Since b1, b2, b3, b4 are unknown and may not
have the identical sign, the control laws in [2, 22] are not applicable. While it can be
verified all these systems share the passivity-like property, we applied the controller (4)
and its performance is depicted in Figure 2.

To make it more interesting, we now consider four heterogeneous agents, including a
single integrator ẋ1 = 0, y1 = x1 as the leader, two oscillators and a controlled Lorenz
system as the followers.


ẋ21 = x22

ẋ22 = −x22 + b2u2

y2 = x22,


ẋ31 = x32

ẋ32 = −x31 − x32 + b3u3

y3 = x32,


ẋ41 = x42 − x41

ẋ42 = x41 − x42 − x41x43 + b4u4

ẋ43 = x41x42 − x43

y4 = x42.

Their interconnection topology is depicted in Figure 1(b) by removing the edge pointed
to agent 1, which satisfies the assumptions in Theorem 4.5. The simulations result under
the controller (12) is presented in Figure 3.
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Fig. 2. Output trajectories of agents under control law (4).
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Fig. 3. Output trajectories of agents under control law (12).

6. CONCLUSIONS

An output consensus problem was solved for a general class of nonlinear heterogeneous
systems without a prior knowledge of the agents’ control directions. Both the leaderless
and leader-following consensus were achieved with the help of two distributed Nussbaum-
type control laws. Further work will include the extensions for more general systems
and graphs with possible disturbances.
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