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Abstract: A leader-following coordination problem is considered in this study where the active leader is driven by an unknown
input. With the help of output regulation and disturbance decoupling, a distributed protocol is proposed to solve this problem.
Two cases are studied based on whether the bound of uncertain (disturbance) inputs of the leader is known. When the bound
is unknown, an adaptive technique is employed to achieve the goal. Simulations are also given to verify the effectiveness of
these controllers.

1 Introduction

The past decade has witnessed a rapid development in the
field of multi-agent system and fruitful results have been
achieved. As one of the important problems, the leader-
following coordination problem of multi-agent system has
been studied from different viewpoints. The basic idea of
the leader-following framework is to select one or more
leaders based on given tasks, and lead the whole group
of agents to achieve our goals. Jadbabaie et al. [1] con-
sidered such a leader-following consensus problem and
proved that if all the agents were jointly connected with
their leader, their states would converge to that of the
leader. Then many results were obtained on consensus of
leader-following multi-agent systems with agents in the
form single-integrators or double integrators in [2]. Hong
et al. [3], proposed a distributed observer-based control law
using local information to track an integrator-type leader,
whereas the target aggregation was studied when a leader
becomes a convex set [4]. Leader-following consensus prob-
lem of general linear system was also studied in [5] under
switching topologies. Recently, a general framework based
on output regulation theory [6–8] with multi-agent system
has been investigated [9–11], distributed protocols were pro-
posed to achieve both references tracking and disturbances
rejection.

However, all those results were obtained based on the
assumption that the dynamic of the leader is exactly known,
that is, the input of the leader is either equal to zero or avail-
able to all the followers. Sometimes, it may be restrictive or
unpractical, especially when the leader is an uncooperative
target.

A distributed tracking problem was investigated in the
absence of velocity or acceleration of measurements in [12]
when an agent is a particle moving under Newton’s law.
Owing to the non-zero control input, a variable structure

controller was proposed for the followers. Moreover,
Li et al. [13] extended it to the case of common linear agents
using the same method. However, they assumed the leader
and followers have the same system matrices.

In this paper, we consider this leader-following problem
with an uncertain leader, whose dynamics is totally differ-
ent from those of the followers. Two different protocols
including static and dynamical rules are proposed to solve
this problem. Note that we consider the leader-following
problem when the leader and followers are different lin-
ear systems and the leader contains uncertain inputs. The
contribution of the work is at least 2-fold:

• This work can be viewed as an extension of well-studied
consensus problem (including state or output consensus).
When there are no uncertainties in the leader, our results
become consistent with the cooperative output regulation
results considered in [2, 10].
• Distributed controllers are proposed to deal with the
uncertain inputs in the leader under some conditions com-
bined with classical disturbance decoupling problem. When
the leader and followers share the same dynamics, it includes
the results in [13] as a special case.

The rest of this paper is organised as follows. In Section 2,
some preliminaries and problem formulation are given. Then
our main results are presented in Section 3, where two types
of control laws are given. Several examples are discussed in
Section 4. Finally, simulations and our conclusion remarks
are presented.

2 Preliminaries and formulation

First of all, we introduce some basic concepts and notations
in graph theory (referring to [14] for details). A directed
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graph (or digraph) is usually denoted as G = (N , E), where
N = {1, 2, . . . , n} is the set of nodes and E is the set of arcs,
each element of which is an ordered pair of distinct nodes
in N . (i, j) denotes an arc leaving from node i and enter-
ing node j. A walk in digraph G is an alternating sequence
i1e1i2e2 · · · ek−1ik of nodes il and arcs em = (im, im+1) ∈ E for
l = 1, 2, . . . , k . If there exists a walk from node i to node j
then node j is said to be reachable from node i. In particular,
each node is thought to be reachable by itself. A node that is
reachable from any node of G is called a globally reachable
node of G.

Here, we consider a system consisting of m agents and
a leader (denoted as node 0). In the sequel, the state of
agent i is denoted by xi for i = 1, . . . , m. With regarding
the m agents as the vertices in V , the relationships between
n agents can be conveniently described by a simple and
graph G, where (i, j) defines one of the graph’s arcs if agent j
is reachable from agent j. Ni denotes the set of labels of those
agents, from which agent i (i = 1, . . . , m) can be reachable
at time t. The weighted adjacency matrix of G is denoted
by Am = [aij] ∈ Rm×m, where aii = 0 and aij ≥ 0 (aij > 0 if
there is a walk from agent i to agent j). Its degree matrix
Dm = diag{d1, . . . , dm} ∈ Rm×m is a diagonal matrix, where
diagonal elements di = ∑m

j=1 aij for i = 1, . . . , m. Then the
Laplacian of the graph is defined as L = Dm − Am.

In what follows, we mainly concern another graph Ḡ asso-
ciated with the system consisting of m agents and the leader.
In fact, Ḡ contains m agents (related to graph G) and the
leader with directed edges from some agents to the leader
by the connection weights ai0 > 0 (if agent i is connected
to the leader, or equivalently, agent i is a neighbor of the
leader, denoted by i ∈ N0).

A0 is an m × m diagonal matrix whose ith diagonal ele-
ment is ai0 (if agent i is connected to the leader or node 0,
namely i ∈ N0). With L still representing the Laplacian
matrix of the digraph G, we define a matrix H = L + A0

to describe the connectivity of the whole graph Ḡ.

Lemma 1 [3]: For any undirected graph G, H is positive
definite if and only if node 0 of Ḡ is globally reachable.

Node 0 in Ḡ should be globally reachable to make the
information of leader is reachable, and therefore at least one
agent in each component of G is connected to the abstract
model or the leader. Otherwise, the coordination between
the agents and the leader cannot be achieved. Hence, the
following assumption is standard on the connectivity of the
considered multi-agent system.

Assumption 1: Node 0 is always globally reachable in Ḡ.

Then we formulate our problem as follows. Consider
a group of N agents and one leader. N followers are
described by

{
ẋi = Axi + Bui

yi = Cxi (i = 1, . . . , N )
(1)

where A ∈ Rm×m, B ∈ Rm×n, C ∈ Rp×m and (A, B) is stabil-
isable. xi, yi and ui are the state variable, output and control
input of agent i, respectively.

The leader is described as follows{
ż = Sz + Dv
y0 = Fz

(2)

where S ∈ Rq×q, D ∈ Rq×r , F ∈ Rp×q with z, y0 as its state
variable and output variable, respectively. Without loss of
generality, we assume D is full-ranked in column. v is an
unstructured but bounded uncertainty. In fact, it may be its
control input but unavailable to any follower. Similar prob-
lems have been investigated by some authors. For example,
when S = 0, D = 1 or S = 02×2, D = [1, 0]T, it comes to
be the case considered in [12] in the absence of velocity
or acceleration of measurements of the leader, while v was
deemed as some bounded disturbances in [3]. When S = A,
D = B, this problem was also investigated by Li et al. [13].

We aim to construct distributed controllers for the fol-
lowers to drive all ei = yi − y0(i = 1, . . . , N ) to approach
zeros.

In the case when there is no uncertain leader input, this
leader-following coordination problem has been studied as
a distributed output regulation problem by taking the leader
as an exosystem and ei as the distributed regulated variable,
and fruitful results have be achieved. However, in practice,
the assumption that the exosystem is exactly known may be
restrictive.

Unlike the distributed output regulation problem discussed
in [9, 10, 15], we consider a general case when v is time-
varying and unknown with the following wild assumptions:

Assumption 2: v is continuous and bounded, that is, ‖v‖∞ <
γ , where γ is a positive constant.

Apparently, when v = 0, this problem includes the dis-
tributed output regulation [9, 10, 15] as special cases. Here,
we cannot use any information of the uncertainties v but its
bound, although it will be showed later that the assumption
that knowing the bound of v can also be relaxed.

If there exists a state feedback control law
u = u(xi, xj, z)(j ∈ Ni), such that ei(t) → 0 when t → ∞ for
any initial conditions xi(0) and z(0) (i = 1, . . . , N ), we say
this leader-following coordination problem is solved by a
full-information controller.

As that in distributed output regulation problem [10], we
give a standard assumption,

Assumption 3: There exist two matrices X and U such that
the following linear matrix equations hold{

XS = AX + BU
CX = F

(3)

Remark 1: The above Sylvester equation has been showed
to be necessary and widely employed when solving output
regulation problem. When S = A, D = B, F = C, it holds
naturally with X = I , U = 0. Its special variant

BU = S − A

is a key ingredient to solve a leader-following consensus
problem [10]. A sufficient and checkable condition to assure
the solvability of these equations is often mentioned as

rank

([
A − λI B

C 0

])
= n + p

for all λ ∈ σ(S).
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To deal with the uncertainties about the leader’s
input, we need another assumption. Since there must
be constant matrices T1 and E with proper dimen-
sions such that BT1 + E = Im, and then XDv = (BT1 +
E)XDv = BT1XDv + EXDv. We denote BT1XDv � φm and
EXDv � φn. The following is inspired by [16] for gener-
alised output regulation.

Assumption 4: Im(EXD) ∈ V−(A, B, C), where Im(EXD) is
the column space of the matrix EXD, V−(A, B, C) is the
largest subspace V of Rn for which there exists a matrix
K such that V is (A + BK)-invariant and contained in
Ker(C) � {ξ ∈ Rm | Cξ = 0} and such that the eigenvalues
of (A + BK)|V are on the open left-half complex plane.

Remark 2: This assumption can assure EXDv is decoupled
from the output of composite system. Unlike the condition
needed in [16], Assumption 4 only needs that a part of
the original disturbances can be decoupled from the out-
put of composite system, and less restrictive than the one
used in [16]. In fact, we will also show that this assumption
will hold even when the constraint on XD as in [16] is not
satisfied.

3 Main results

In this section, we should design distributed controllers for
agents and solve this leader-following coordination problem.

Since the leader may not be directly connected with all
followers, we propose the following distributed observer for
agent i

żi = Szi − μ
[∑

aij(zi − zj) + ai0(zi − z)
]

+ qi (4)

where qi will be designed later.
Under Assumption 4, there is K such that EXDv is decou-

pled from the output of composite system, and then a
distributed protocol for output regulation can be given in
the following form

ui = K(xi − Xzi) + Uzi + pi

żi = Szi − μ
[∑

aij(zi − zj) + ai0(zi − z) + qi

]

Denoting K1 = K , K2 = U − KX , we have

ui = K1xi + K2zi + pi

żi = Szi − μ
[∑

aij(zi − zj) + ai0(zi − z)
]

+ qi

(5)

Remark 3: Notice that, when pi and qi are omitted, this con-
trol law solves the distributed output regulation problem
with the same followers but with v = 0 in the exosys-
tem [10]. In other words, pi and qi are designed to deal
with the uncertain parts v. We assume D �= 0 without loss
of generality.

In the following two subsections, we construct pi and
qi considering two circumstances: when γ is known or
unknown.

3.1 γ is known

Assume γ , the bound of v, is known in this subsection.
We first introduce the following lemma, which establishes
the convergency of the distributed observer (4) under a
designed qi.

Let z̄i = zi − z. Then

˙̄zi = Sz̄i − μ

⎡
⎣∑

j∈Ni

aij(z̄i − z̄j) + ai0z̄i

⎤
⎦ + qi − Dv

or in a compact form

˙̄z = (I ⊗ S − μH ⊗ I )z̄ + q − 1 ⊗ (Dv) (6)

We can obtain the following lemma

Lemma 2: Under Assumption 1, if

qi = −γ Dsgn

⎛
⎝DT

∑
j∈Ni

aij(zi − zj) + ai0(zi − z)

⎞
⎠

then the distributed observer will asymptotically converge
to z for a large enough μ.

Proof: Consider the error system in the following

˙̄z = (I ⊗ S − μH ⊗ I )z̄ + q − 1 ⊗ (Dv) (7)

Take a Lyapunov function as V = z̄T(H ⊗ I )z̄, and its
derivative is as follows

V̇ = z̄T(H ⊗ I ){[I ⊗ S − μH ⊗ I ]z̄ + q − 1 ⊗ (Dv)}
+ {[I ⊗ S − μH ⊗ I ]z̄ + q − 1 ⊗ (Dv)}T(H ⊗ I )z̄

= z̄T[H ⊗ (S + ST) − 2μH 2 ⊗ I ]z̄
+ 2z̄T(H ⊗ I )[q − 1 ⊗ (Dv)]

Since H is positive, there exists an unitary matrix U such
that � = U THU is in diagonal form, and let z̃ = (U ⊗ I )z̄,

z̄T[H ⊗ (S + ST) − 2H 2 ⊗ I ]z̄
= z̃T[� ⊗ (S + ST) − 2�2 ⊗ I ]z̃
=

∑
λi z̃

T
i (S + ST − 2μλiI )z̃i

We can select a large μ > 0 such that for all i,

S + ST − 2μλiI < − max
j=1,...,N

(1/λj)I

In fact, since S + ST is symmetric, it is enough to take a
μ > 0 such that (2μλi + maxj=1,...,N (1/λj)I − S − ST is
strictly diagonally dominant.
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Hence, we can obtain

z̄T[H ⊗ (S + ST) − 2μH 2 ⊗ I ]z̄ < −z̄Tz̄

Then we consider the last term 2z̄T(H ⊗ I )[q − 1 ⊗ (Dv)],
and we can find

q = −γ (I ⊗ D)sgn[(H ⊗ DT)z̄]
Then

2z̄T(H ⊗ I )q − 2z̄T(H ⊗ I )(1 ⊗ Dv)

= 2z̄T(H ⊗ I )q − 2z̄T(H ⊗ I )(I ⊗ D)(1 ⊗ v)

≤ −2γ ‖(H ⊗ DT)z̄‖1 + 2γ ‖(H ⊗ DT)z̄‖1

= 0

Hence
V̇ ≤ −z̄Tz̄

It is easy to find that V and then z̄ will asymptotically
converge to zero. �

Clearly, since A + BK1 is Hurwitz, there exist two positive
definite matrices P and Q such that

(A + BK1)
TP + P(A + BK1) = −Q (8)

It is time to give the first main theorem.

Theorem 1: Under Assumptions 1–4, the leader-following
coordination problem of agents described by (1) with the
leader (2) can be solved by the control law (5) with

pi = −γ ‖T1XD‖2sgn

×
⎛
⎝BTP

⎡
⎣∑

j∈Ni

aij(xi − xj) + ai0(xi − Xz)

⎤
⎦

⎞
⎠

and

qi = −γ Dsgn

⎛
⎝DT

⎡
⎣∑

j∈Ni

aij(zi − zj) + ai0(zi − z)

⎤
⎦

⎞
⎠

Proof: With denoting x̄i = xi − Xz and x̄ = [x̄T
1 , . . . , x̄T

n ]T, the
closed-loop system is

˙̄x = [I ⊗ (A + BK1)]x̄ + [I ⊗ (BK2)]z̄
+ (I ⊗ B)p − (I ⊗ XD)(1 ⊗ v)

˙̄z = [I ⊗ S − μH ⊗ I ]z̄ + q − (1 ⊗ D)(1 ⊗ v)

Since XDv = φm + φn, recalling Assumption 4, we obtain

ei = Cx̄i

= Ce(t−t0)(A+BK1)x̄i(t0)

+ C

∫ t

t0

e−(t−τ)(A+BK1)B(pi − φm) dτ

− C

∫ t

t0

e−(t−τ)(A+BK1)φndτ

+ C

∫ t

t0

e−(t−τ)(A+BK1)BK2z̄iτ

= Ce(t−t0)(A+BK1)x̄i(t0)

+ C

∫ t

t0

e−(t−τ)(A+BK1)B(pi − φm) dτ

+ C

∫ t

t0

e−(t−τ)(A+BK1)BK2z̄i dτ

that is, φn can be decoupled from ei.
Hence, it is enough to prove that the following system is

asymptotically stable under pi and qi

˙̄x = [I ⊗ (A + BK1)]x̄ + (I ⊗ BK2)z̄

+ (I ⊗ B)[p − (I ⊗ T1XD)(1 ⊗ v)]
˙̄z = (I ⊗ S − μH ⊗ I )z̄ + q − 1 ⊗ (Dv)

As showed in Lemma 2, the second system will asymptot-
ically converge to be zero, and we only have to show that
the first system is input-to-state stable with z̄ as its input.

Since pi = λsgn(BTP[∑j∈Ni
(xi − xj) + ai0(xi − Xz)]) and

λ = −γ ‖T1XD‖2, the first subsystem is as follows

˙̄x = [I ⊗ (A + BK1)]x̄ + (I ⊗ BK2)z̄

+ (I ⊗ B)[λsgn[(H ⊗ BTP)x̄]
− (I ⊗ T1XD)(1 ⊗ v)]

Taking a Lyapunov function as

V = x̄T(H ⊗ P)x̄

we consider its derivative (see equation at the bottom of the
page)

V̇ = ([I ⊗ (A + BK1)]x̄ + (I ⊗ B)[p − (I ⊗ T1XD)(1 ⊗ v)])T(H ⊗ P)x̄

+ x̄T(H ⊗ P)([I ⊗ (A + BK1)]x̄ + (I ⊗ B)[p − (I ⊗ T1XD)(1 ⊗ v)])
+ 2x̄T(H ⊗ P)(I ⊗ BK2)z̄

= −x̄T(H ⊗ Q)x̄ + 2x̄T(H ⊗ PB)[p − (I ⊗ T1XD)(1 ⊗ v)] + 2x̄T(H ⊗ P)(I ⊗ BK2)z̄

≤ −x̄T(H ⊗ Q)x̄ + 2λx̄T(H ⊗ PB) sgn((H ⊗ BTP)x̄)

− 2x̄T(H ⊗ PB)(I ⊗ T1XD)(1 ⊗ v) + 2x̄T(H ⊗ P)(I ⊗ BK2)z̄

≤ −x̄T(H ⊗ Q)x̄ + 2λ‖(H ⊗ BTP)x̄‖1 − 2λ‖(H ⊗ BTP)x̄‖2 + 2x̄T(H ⊗ P)(I ⊗ BK2)z̄

≤ −x̄T(H ⊗ Q)x̄ + 2x̄T(H ⊗ PBK2)z̄
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Denoting W (x̄) � x̄T(H ⊗ Q)x̄, it follows

V̇ ≤ W (x̄) + 2x̄T(H ⊗ PBK2)z̄

where W (x̄) is positive definite.
It is sufficient to conclude that this subsystem is input-to-

state stable with z̄. Recalling Lemma 4, we conclude that x̄
and hence e will converge to be zero when t → ∞. �

Remark 4: For an important special case when S = A, D =
B, F = C, we can find that Assumptions 3 and 4 holds nat-
urally in this circumstance X = I , U = 0 and with φn = 0.
Simplified static controllers can be given without using
distributed observers as

ui = −max

{
1

λ̄
, 1

}
BTP

⎡
⎣∑

j∈NI

aij(xi − xj) + ai0(xi − z)

⎤
⎦

+ λsign

⎛
⎝BTP

⎡
⎣∑

j∈NI

aij(xi − xj) + ai0(xi − z)

⎤
⎦

⎞
⎠

where P is the positive definite solution of ATP + PA + I −
PBBTP = 0 and λ̄ is the minimal eigenvalue of H . In this
case, it is consistent with the results obtained in [13].

3.2 γ is unknown

Here, we consider when v is bounded without a known γ .
To overcome the difficulty of unknown γ , we pro-

pose the following controller for agent i with a dynamic
gain (see (9))

where θi is an updated gain and μ is a positive constant to
be designed.

Then the following result can be obtained.

Theorem 2: Under Assumptions 1–4, the leader-following
coordination problem of agents described by (1) with
exosystem (2) can be solved by the control law (9).

Proof: With denoting x̄i = xi − Xz and x̄ = [x̄T
1 , . . . , x̄T

n ]T, the
closed-loop system can be written as

˙̄x = [I ⊗ (A + BK1)]x̄ + [I ⊗ (BK2)]z̄
+ (I ⊗ B)p − (I ⊗ XD)(1 ⊗ v)

˙̄z = [I ⊗ S − μH ⊗ I ]z̄ + q − (1 ⊗ D)(1 ⊗ v)

Similarly, with Assumption 4, it is enough to prove the fol-
lowing system is asymptotically stable under these protocols

˙̄x = [I ⊗ (A + BK1)]x̄ + (I ⊗ BK2)z̄

+ (I ⊗ B)[p − (I ⊗ T1XD)(1 ⊗ v)]
˙̄z = [I ⊗ S − μH ⊗ I ]z̄ + q − (1 ⊗ D)(1 ⊗ v)

Under the control law (9), the closed-loop system is
expressed as follows (see equation at the bottom of the page)

Based on the Lyapunov equation (8), take a Lyapunov
function as

V = x̄T(H ⊗ P)x̄ + z̄T(H ⊗ I )z̄ +
∑

(θi − α)2

where α is a constant, which can be taken large than γ .
Considering its derivative

V̇ = x̄T(H ⊗ [P(A + BK1) + (A + BK1)
TP])x̄

+ 2x̄T(H ⊗ PBK2)z̄

+ 2x̄T(H ⊗ PB)[p − (I ⊗ T1XD)(1 ⊗ v)]
+ z̄T[H ⊗ (S + ST) − 2μH 2 ⊗ (I )]z̄T

+ 2z̄T(H ⊗ I )[q − 1 ⊗ (Dv)] + 2
∑

(θi − α)θ̇i

ui = K1xi + K2zi − θi‖T1XD‖2 sgn

⎛
⎝BTP

⎡
⎣∑

j∈Ni

aij(xi − xj) + ai0(xi − Xz)

⎤
⎦

⎞
⎠

żi = Szi − μ

⎡
⎣∑

j∈Ni

aij(zi − zj) + ai0(zi − z)

⎤
⎦ − θiDsgn

⎛
⎝DT

⎡
⎣∑

j∈Ni

aij(zi − zj) + ai0(zi − z)

⎤
⎦

⎞
⎠

θ̇i = ‖T1XD‖2

∥∥∥∥∥∥BTP

⎡
⎣∑

j∈Ni

aij(xi − xj) + ai0(xi − Xz)

⎤
⎦

∥∥∥∥∥∥
1

+
∥∥∥∥∥∥DT

⎡
⎣∑

j∈Ni

aij(zi − zj) + ai0(zi − z)

⎤
⎦

∥∥∥∥∥∥
1

(9)

˙̄x = [I ⊗ (A + BK1)]x̄ + (I ⊗ BK2)z̄

+ (I ⊗ B)(−θ‖T1XD‖2sgn[(H ⊗ BTP)x̄] − (I ⊗ T1XD)(1 ⊗ v))

˙̄z = [I ⊗ S − μH ⊗ I ]z̄ − (I ⊗ D)θsgn((H ⊗ DT)z̄) − (I ⊗ D)(1 ⊗ v)

θ̇i = ‖T1XD‖2

∥∥∥∥∥∥BTP

⎡
⎣∑

j∈Ni

aij(xi − xj) + ai0(xi − Xz)

⎤
⎦

∥∥∥∥∥∥
1

+
∥∥∥∥∥∥DT

⎡
⎣∑

j∈Ni

aij(zi − zj) + ai0(zi − z)

⎤
⎦

∥∥∥∥∥∥
1

(i = 1, . . . , N )
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From the proof of Lemma 4 and Theorem 1, we have (see
equation at the bottom of the page)

and (see equation at the bottom of the page)
As a result (see equation at the bottom of the page)

By Young’s inequality

V̇ ≤ −x̄T(H ⊗ Q)x̄ + z̄T[H ⊗ (S + ST) − 2μH 2 ⊗ (I )]z̄T

+ l2‖x̄‖2 + ‖(H ⊗ PBK2)‖2
2/l2‖z̄‖2

and we can take a constant l small enough so that

−1

2
x̄T(H ⊗ Q)x̄ + l2x̄Tx̄ ≤ 0

Then, with the fixed l, take a μ large enough such that

z̄T[H ⊗ (S + ST) − 2μH 2 ⊗ (I )]z̄T

+ ‖(H ⊗ PBK2)‖2
2/l2‖z̄‖2 ≤ −z̄Tz̄

Hence, we can obtain that

V̇ ≤ −1

2
x̄T(H ⊗ Q)x̄ − z̄Tz̄

≤ − λ̄σmin(Q)

2
x̄Tx̄ − z̄Tz̄ � W (x̄, z̄)

Denoting W (x̄, z̄) � λ̄σmin(Q)

2 x̄Tx̄ + z̄Tz̄, it follows

V̇ ≤ −W (x̄, z̄)

x̄(H ⊗ [P(A + BK1) + (A + BK1)
TP])x̄ + 2x̄T(H ⊗ PB)[p − (I ⊗ T1XD)(1 ⊗ v)]

= −x̄T(H ⊗ Q)x̄ + 2λx̄T(H ⊗ PB) sgn((H ⊗ BTP)x̄) − 2x̄T(H ⊗ PB)(I ⊗ T1XD)(1 ⊗ v)

+ 2
∑

i

(γ − θi)‖T1XD‖2

∥∥∥∥∥∥BTP

⎡
⎣∑

j∈Ni

aij(xi − xj) + ai0(xi − Xz)

⎤
⎦

∥∥∥∥∥∥
1

≤ −x̄T(H ⊗ Q)x̄ + 2
∑

i

(γ − θi)‖T1XD‖2

∥∥∥∥∥∥BTP

⎡
⎣∑

j∈Ni

aij(xi − xj) + ai0(xi − Xz)

⎤
⎦

∥∥∥∥∥∥
1

z̄T[H ⊗ (S + ST) − 2μH 2 ⊗ (I )]z̄T + 2z̄T(H ⊗ I )[q − 1 ⊗ (Dv)]
≤ z̄T[H ⊗ (S + ST) − 2μH 2 ⊗ (I )]z̄T + 2z̄T(H ⊗ I )[−γ (I ⊗ D) sgn[(H ⊗ DT)z̄] − 1 ⊗ (Dv)]

+ 2
∑

i

(γ − θi)

∥∥∥∥∥∥DT

⎡
⎣∑

j∈Ni

aij(zi − zj) + ai0(zi − z)

⎤
⎦

∥∥∥∥∥∥
1

≤ z̄T[H ⊗ (S + ST) − 2μH 2 ⊗ (I )]z̄T + 2
∑

i

(γ − θi)

∥∥∥∥∥∥DT

⎡
⎣∑

j∈Ni

aij(zi − zj) + ai0(zi − z)

⎤
⎦

∥∥∥∥∥∥
1

V̇ ≤ −x̄T(H ⊗ Q)x̄ + 2
∑

i

(γ − θi)‖T1XD‖2

∥∥∥∥∥∥BTP

⎡
⎣∑

j∈Ni

aij(xi − xj) + ai0(xi − Xz)

⎤
⎦

∥∥∥∥∥∥
1

+ z̄T[H ⊗ (S + ST) − 2μH 2 ⊗ (I )]z̄T + 2
∑

i

(γ − θi)

∥∥∥∥∥∥DT

⎡
⎣∑

j∈Ni

aij(zi − zj) + ai0(zi − z)

⎤
⎦

∥∥∥∥∥∥
1

+ 2x̄T(H ⊗ PBK2)z̄ + 2
∑

(θi − α)θ̇i

≤ −x̄T(H ⊗ Q)x̄ + 2
∑

i

(α − θi)‖T1XD‖2

∥∥∥∥∥∥BTP

⎡
⎣∑

j∈Ni

aij(xi − xj) + ai0(xi − Xz)

⎤
⎦

∥∥∥∥∥∥
1

+ z̄T[H ⊗ (S + ST) − 2μH 2 ⊗ (I )]z̄T + 2
∑

i

(α − θi)

∥∥∥∥∥∥DT

⎡
⎣∑

j∈Ni

aij(zi − zj) + ai0(zi − z)

⎤
⎦

∥∥∥∥∥∥
1

+ 2‖(H ⊗ PBK2)‖2‖x̄T‖2‖z̄‖2 + 2
∑

(θi − α)θ̇i

= −x̄T(H ⊗ Q)x̄ + z̄T[H ⊗ (S + ST) − 2μH 2 ⊗ (I )]z̄T + 2‖(H ⊗ PBK2)‖2‖x̄T‖2‖z̄‖2
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where W (x̄, z̄) is positive definite. Here λ̄ is the minimal
eigenvalue of all H and σmin(Q) is the minimal eigenvalue
of Q.

Hence, the closed-loop system is stable. Furthermore,
due to the dynamics of x̄, ˙̄x and z̄ are bounded, so is Ẇ .
Consequently, W is uniformy continuous.

Obviously, V is decreasing and bounded in below by
zero. As a result, limt→∞ V (x̄(t)) exists. By the standard
comparison theorem, we obtain

∫∞

t0

W (x̄(t)) dt ≤ V (t0) − V (∞)

Recalling Barbalat’s lemma, W (x̄) → 0 when t → ∞, and
hence x̄, z̄ and regulated variable ei converges to be zero
when time goes to infinity, while θi converges to be some
finite value. �

Remark 5: Note that, no upper bound of the uncertainties
is needed in protocols given in Theorem 2. The adap-
tive controller given in [12] is a special case of our
controller, and dynamic gain techniques make it possible
to solve this problem without using the upper bound of
uncertainties.

Remark 6: A robustness issue may corrupt the controller’s
applications if there are disturbances and noises in the
measurements, although it is theoretically proved to drive
all regulated variables to vanish as t → ∞. To tackle
this problem, we propose an adaptive updated law with
σ -modification [17] as follows (see (10)).

From the proof of Theorem 2, it can be easily verified
that this control law will drive all regulated variables into
a bounded set eventually. Furthermore, the bound can be
small enough by tuning σ , which can be chosen according
to practical control goals.

4 Discussions

It has been pointed out that our leader-following coordi-
nation problem can be seen as an extension of distributed
output regulation, which covers many existing results. In this
section, we provide special cases to show the relationship
between ours and previous works.

(1) With distributed tracking: when A = S = 0, our problem
is reduced to the tracking problem of single integrators if
B = D = 1, or double-integrators [12] if B = D = [0 1]T.
For general linear systems with S = A, B = D, C = F , it

can be found Assumptions 3 and 4 always hold with X = I ,
U = 0 and E = 0, our control law solved the same problem
considered in [13].
(2) With distributed output regulation: when the leader is
unforced that is, v = 0, this problem has been investi-
gated [3, 18, 19], and theoretical results have been achieved
in the framework of distributed output regulation [9, 10]
with consensus and synchronisation as its special cases. For
example, in [20], the author considered a consensus prob-
lem, when there existed a leader, it is the case where S = 0,
D = 1 and v = 0. However, those controllers fail to drive
the regulated variables to be zero if v �= 0 even knowing
exactly v. The protocols proposed in the last section, firstly,
can somehow solve the distributed output regulation prob-
lem as that in [10]. Secondly, the regulation variables can
be driven to zero even under the uncertainties in the leader
when the above assumptions hold.
(3) With other related works: when N = 2, we solve the
generalised output regulation problem proposed in [16].
Furthermore, the condition (4) is relaxed than that given
in [16]. At the same time, when the bound of uncertainties is
unknown, the controller with an adaptive law enlarges the
potential applications of this generalised output regulation
problem.

In the following, we give a non-trivial class of sys-
tems that satisfy Assumptions 3 and 4. Hence, the leader-
following coordination problem can be solved.

Consider the follower i as

ẋi = Axi + BMzi + Bui

żi = (A0 + B0M )zi + Nxi + B0ui

yi = Cxi

(11)

where (A, B) is controllable and A0 is Hurwitz without
common eigenvalues with A. The leader has the following
dynamics

ẋ0 = Ax0 + Bv

y0 = Cx0

(12)

Since A0 has no common eigenvalues with A, there is X2

such that X2A = A0X2 + N . We can verify that X = [I , X T
2 ]T

and U = −MX2 satisfy (3).
Clearly, XB = [B, X2B]T cannot be decoupled from the

output of composite system, since the necessary condition
[C, 0][BT, BTX T

2 ]T = CB = 0 may not be satisfied. However,

ui = K1xi + K2zi − θi‖T1XD‖2sgn

⎛
⎝BTP

⎡
⎣∑

j∈Ni

aij(xi − xj) + ai0(xi − Xz)

⎤
⎦

⎞
⎠

żi = Szi − μ

⎡
⎣∑

j∈Ni

aij(zi − zj) + ai0(zi − z)

⎤
⎦ − θiDsgn

⎛
⎝DT

⎡
⎣∑

j∈Ni

aij(zi − zj) + ai0(zi − z)

⎤
⎦

⎞
⎠

θ̇i = ‖T1XD‖2

∥∥∥∥∥∥BTP

⎡
⎣∑

j∈Ni

aij(xi − xj) + ai0(xi − Xz)

⎤
⎦

∥∥∥∥∥∥
1

+
∥∥∥∥∥∥DT

⎡
⎣∑

j∈Ni

aij(zi − zj) + ai0(zi − z)

⎤
⎦

∥∥∥∥∥∥
1

− σθi

× (i = 1, . . . , N ) (10)
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Assumption 4 holds with K = [K1, −M ] and

E =
[

I − BB+ 0

−B0B+ I

]
, T1 = [

B+, 0
]

where K1 is a matrix such that A + BK1 is Hurwitz and B+
is a generalised inverse of B such that B+B = I .

5 Simulation

In this section, we provide an example to illustrate the
effectiveness of our controllers.

Consider three followers in the following form⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋi1 = xi2

ẋi2 = ui

ẋi3 = −xi3 + xi1 + ui

yi = xi1

with the leader as ⎧⎪⎨
⎪⎩

ż1 = z2

ż2 = v

y0 = z1

where v = −z1.
Furthermore, we assume the interconnection topology is

fixed satisfying Assumption 1 as follows: the interconnection
topology is described by the following Laplacian

L =
[

1 −1 0
−1 1 0
0 0 0

]

and the diagonal matrices for the interconnection between
followers and the agents are

A0 =
[

0 0 0
0 1 0
0 0 1

]

Since the followers have a different model from the leader,
we can not use the controllers proposed in [13]; furthermore,
the second assumption in [16] fails because XD = [0, 1, 1]T.
However, it is easy to find that this system is in the form
of (11) and Assumption 3 hold with X2 = [1, 1] and X =
[I , X T

2 ]T, U = 0. Hence, if we take

E =
[

1 0 0
0 0 0
0 −1 1

]

then we find that EXD = [0, 0, 0]T. Hence, Assumption 4
holds with K = [−64, −16, 0].

Since v depends on the unknown initials of z and we
employed the adaptive control law.

By solving the Lyapunov equation (8) in Matlab with Q =
I , we obtain

P =
⎡
⎣ 3.7137 0.2934 −0.2901

0.2934 0.5372 −0.4877

−0.2901 −0.4877 0.5000

⎤
⎦

Setting μ = 20, σ = 0.1, all initials of followers are ran-
domly generated in [−5, 5] × [−5, 5] × [−5, 5], and the con-
troller for agent i (i = 1, 2, 3) can be given in form of (10).
Simulation results are showed in Figs. 1 and 2.

Fig. 1 Tracking performance of agents

Fig. 2 Tracking errors of agents

6 Conclusions

A generalised leader-following coordination problem for
multi-agent system was investigated where there are
bounded unknown inputs in the leader dynamics. Two dis-
tributed control laws were given to solve this problem to
deal with the cases with or without knowing the bound of
uncertainty inputs in the leader. Simulation examples were
also provided for illustration.
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